alexa A Within-Subject Normal-Mixture Model with Mixed-Effects for Analyzing Heart Rate Variability
ISSN: 2155-6180

Journal of Biometrics & Biostatistics
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

A Within-Subject Normal-Mixture Model with Mixed-Effects for Analyzing Heart Rate Variability

Jessica M Ketchum1*, Al M Best2 and Viswanathan Ramakrishnan3

1Virginia Commonwealth University, Assistant Professor, Department of Biostatistics, Director of Statistical Services, VCU-Center for Rehabilitation Science and Engineering, USA

2Virginia Commonwealth University, Associate Professor, School of Dentistry, USA

3Medical College of South Carolina, Professor, Division of Biostatistics and Epidemiology, USA

*Corresponding Author:
Jessica M. Ketchum
Virginia Commonwealth University
Assistant Professor
Department of Biostatistics
Director of Statistical Services
VCU-Center for Rehabilitation Science and Engineering, USA
Tel: 804-986-8219
Fax: 804-828-8900
E-mail: [email protected]

Received date: March 19, 2012; Accepted date: April 24, 2012; Published date: April 25, 2012

Citation: Ketchum JM, Best AM, Ramakrishnan V (2012) A Within-Subject Normal-Mixture Model with Mixed-Effects for Analyzing Heart Rate Variability. J Biomet Biostat S7:013.doi:10.4172/2155-6180.S7-013

Copyright: © 2012 Ketchum JM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

 Data on Heart Rate Variability (HRV) have been used extensively to indirectly assess the autonomic control of the heart. The distributions of HRV measures, such as the RR-interval, are not necessarily normally distributed and current methodology does not typically incorporate this characteristic. In this article, a mixed-effects modeling approach under the assumption of a two-component normal-mixture distribution for the within-subject observations has been proposed. Estimation of the parameters of the model was performed through an application of the EM algorithm, which is different from the traditional EM application for the normal-mixture methods. An application of this method was illustrated and the results from a simulation study were discussed. Differences among other methods were also reviewed.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords