GET THE APP

Journal of Genetic Syndromes & Gene Therapy

Journal of Genetic Syndromes & Gene Therapy
Open Access

ISSN: ISSN: 2157-7412

+44 1223 790975

Abstract

Adenovirus-Mediated Bcl-Xl Gene Therapy Combined with Pronase Treatment Protects the Small Intestine from Radiation-Induced Enteritis in Mouse Model

Fumikazu Koyama, Kazuaki Uchimoto, Hisao Fujii, Hirofumi Hamada, Kazuo Ohashi, Takeo Nomi, Tadashi Nakagawa, Shinji Nakamura, Takeshi Ueda and Yoshiyuki Nakajima

Intestinal injury is a major side effect of radiation treatment for many malignancies. The present study investigated whether transducing Bcl-xL, a potent anti-apoptotic gene, into intestinal epithelial cells would exert protective effects against radiation-induced acute injuries. Methods: Adenoviral vectors containing the human Bcl-xL gene (AxCABclxL) or β-galactosidase gene (AxCAlacZ) driven by the CAG promoter were generated. To increase transduction efficiency into the mucosal epithelium, the intraluminal space of the small intestine of mice was washed with buffered-saline and mucus components were digested with Pronase MS®. Gene transduction was performed by injecting 2×108 pfu adenoviral vector into the pre-treated small intestine. Transduction efficiency was examined by X-gal staining 24 hours after AxCAlacZ infection. Radiation-induced acute injury of the small intestine was induced by whole body irradiation (15 Gy) performed 24 hours after adenoviral vector infection. Apoptotic epithelial cells were visualized by TUNEL assay. Morphological analysis was assessed by histological examination. Results: Successful transduction after Pronase MS® treatment was achieved in the basal crypt epithelial cells in the ileum, thought to be the location of stem cells, as determined by X-gal staining. The AxCABclxL group demonstrated significantly fewer radiation-induced apoptotic mucosal epithelial cells when compared with the other two groups at 6 hours after irradiation (p<0.05). At 72 hours after irradiation, the morphological appearance of the small intestine in the AxCABclxL group showed significantly less radiation damage in terms of mucosal thickness (p<0.001). Conclusions: The present study indicates that Bcl-xL gene expression using adenoviral vector-mediated transduction is a valuable approach to prevent intestinal injury caused by radiation exposure.

Top