alexa Adipose Derived Tissue Engineered Heart Valve
ISSN: 2157-7552

Journal of Tissue Science & Engineering
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Adipose Derived Tissue Engineered Heart Valve

Frese L1,2, Sanders B3, Beer GM4, Weber B1,2, Driessen-Mol A3, Baaijens FPT3 and Hoerstrup SP1,2,5*

1University Hospital and University Zurich, Division of Surgical Research, Zurich, Switzerland

2Swiss Center for Regenerative Medicine, University Hospital, Zurich, Switzerland

3Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands

4Clinic for Plastic, Aesthetic and Reconstructive Surgery, Zurich, Switzerland

5Clinic for Cardiovascular Surgery, University Hospital, Zurich, Switzerland

Corresponding Author:
Simon P Hoerstrup
Swiss Center of Regenerative Medicine and Clinic for Cardiovascular Surgery
University Hospital, Zurich, Raemistrasse 100, 8091 CH-Zurich, Switzerland
Tel: +41 44 634 56 25
Fax: +41 44 634 56 08
E-mail: [email protected] usz.ch

Received date: August 17, 2015; Accepted date: September 17, 2015; Published date: September 24, 2015

Citation: Frese L, Sanders B, Beer GM, Weber B, Driessen-Mol A, et al. (2015) Adipose Derived Tissue Engineered Heart Valve. J Tissue Sci Eng 6:156. doi:10.4172/2157-7552.1000156

Copyright: © 2015 Frese L, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Abstract Introduction: A major challenge associated with heart valve tissue engineering is the in vitro creation of mature tissue structures compliant with native valve functionality. Various cell types have been investigated for heart valve tissue engineering. In addition to prenatal, umbilical cord- and vascular-derived cells, mesenchymal stem cells (MSCs) have gained large interest for tissue engineering purposes, because of their broad differentiation potential. However, bone marrow derived MSCs require a highly invasive harvesting procedure and decline in both cell number and differentiation potential proportionally with the donor’s age. In contrast, adipose derived stem cells (ADSCs) represent an interesting alternative. The ease of repeated access to subcutaneous adipose tissue as well as the less invasive donation procedures provide clear advantages. Therefore, this study investigated the suitability of ADSCs as alternative cell source for tissue engineered heart valves (TEHVs). Methods: Human ADSCs were seeded on TEHV-scaffolds (n=11) made of nonwoven polyglycolic acid coated with poly-4-hydroxybutyrate. TEHVs were cultivated in diastolic-pulse-duplicator-bioreactor systems and subsequently seeded with a superficial layer of ADSC-derived endothelial cells. Quantitative assessment of extracellular matrix composition of the TEHV-leaflets was performed with biochemical analyses for sulphated glycosaminoglycans, hydroxyproline and DNA content. Microstructural evaluation was performed on representative samples of the TEHVleaflets by (immuno-)histochemistry and scanning electron microscopy. The mechanical properties of the ADSC derived TEHV-leaflets were characterized by biaxial tensile tests. Results: ADSC-derived TEHV-leaflets showed a homogenous vital cell distribution throughout the whole leaflet structure that consisted of large amounts of glycosaminoglycans and collagen and was endothelialized. Furthermore, the mechanically stable matrix of the ADSC-derived TEHVs showed a stiffness range in the right order of magnitude for heart valve applications. Conclusion: Human ADSCs represent a promising alternative autologous mesenchymal cell source for TEHVs that is of large clinical relevance due to their easy accessibility, efficient proliferation and excellent tissue formation capacities.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords