alexa Aerodynamic Load Estimation of Helicopter Rotor in Hovering Flight
ISSN: 2168-9792

Journal of Aeronautics & Aerospace Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Aerodynamic Load Estimation of Helicopter Rotor in Hovering Flight

Reddy MVR*
Department of Aeronautical Engineering, Nitte Meenakshi Institute of Technology, India
*Corresponding Author : Reddy MVR
Department of Aeronautical Engineering
Nitte Meenakshi Institute of Technology, India
Tel: 080 2216 7803
E-mail: [email protected]
Received January 03, 2016; Accepted February 22, 2016; Published February 25, 2016
Citation: Reddy MVR (2016) Aerodynamic Load Estimation of Helicopter Rotor in Hovering Flight. J Aeronaut Aerospace Eng 5:160. doi:10.4172/2168-9792.1000160
Copyright: © 2016 Reddy MVR. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
 

Abstract

The aerodynamic characteristics of a helicopter rotor blade are highly dependent on the wake induced flow. The rotor blades, which are rotating wings, shed vortices which trail in helical path along the axis of rotation forming a wake. The velocity field induced by the vortex system influences the blade loading. The free wake model analysis is computationally intensive and numerically unstable in very low speed applications. For the aerodynamic analysis of a hovering rotor, Miller and Reddy have proposed simple wake models in which the spiral vortex wake is replaced by a system of vortex rings or vortex line elements in conjunction with lifting line theory to overcome some of the problems encountered in free-wake models. In the Proposed model of the rotor, the same lifting line model of the rotor is retained, but a further simplification of the vortex wake is proposed. This method requires relatively very small computing time compared to the above models, but without necessarily sacrificing the accuracy in estimating the aerodynamic blade loading.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords