alexa An Analysis for a Novel Path Planning Method
ISSN: 2168-9695

Advances in Robotics & Automation
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

An Analysis for a Novel Path Planning Method

Kamkarian P1* and Hexmoor H2

1Department of Electrical and Computer Engineering, Southern Illinois University, Carbondale, USA

2Department of Computer Science, Southern Illinois University, Carbondale, USA

*Corresponding Author:
Kamkarian P
Department of Electrical and Computer Engineering
Southern Illinois University, Carbondale, USA
Tel: +1618-453-2121
E-mail: [email protected]

Received: July 15, 2015 Accepted: July 27, 2015 Published: July 29, 2015

Citation: Kamkarian P, Hexmoor H (2015) An Analysis for a Novel Path Planning Method. Adv Robot Autom 4:130. doi: 10.4172/2168-9695.1000130

Copyright: © 2015 Kamkarian P, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Related article at Pubmed, Scholar Google

Abstract

The aim of disseminating this research article is to introduce a novel path planner method in detail and argue that it performs as well as other offline path planners in terms of analyzing and constructing collision-free trajectories in addition to shortest possible path from start to goal configurations. Our novel path planner is able to build optimal trajectories in terms of the shortest length as well as near miss avoidance route from the initial to the goal configuration. It allows a moving point robot to make a proper transition from its assigned goal toward a collision-free path in the reasonable time frame, successfully. As an offline path planner, our planner performs the operation of analyzing the environment on static workspaces with the fixed and known initial and the goal configurations and computing optimal trajectories, using global information about the environment. As a feature of novelty, our planner benefits of using a limited amount of global knowledge, however. This helps moving robot to allocate less system resources such as memory which leads the robot to perform the process of building optimal trajectories more efficiently. The shortest route is considered to be secure enough to enable mobile robot to maneuver among obstacles in workspace without involving any near misses. Our novel path planner is able to process any types of obstacles in terms of shapes and edges flawlessly. For instance, it can be applied on any spiral or curved obstacles successfully. This novelty feature distinguishes our offline path planner from the majority of other planners that are solely able to compute the optimal trajectories for certain obstacle shapes such as polygonal obstacles. Moreover, this paper attempts to evaluate our novel path planner algorithm abilities and skills by examining it on selected workspaces. We also assess our novel path planner through comparing it with other planners to reveal its efficiency in terms of ability to route optimal trajectories in regards to minimizing trajectory distances from initial to the goal configurations as well as the reliability and safety of the optimal processed path.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords