alexa Analysis of Exhaust Manifold using Computational Fluid Dynamics
ISSN: 2476-2296

Fluid Mechanics: Open Access
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Analysis of Exhaust Manifold using Computational Fluid Dynamics

Marupilla Akhil Teja*, Katari Ayyappa, Sunny Katam and Panga Anusha

SIR C R Reddy College of Engineering, Andhra University, Vizag, India

*Corresponding Author:
Teja AM
SIR C R Reddy College of Engineering
Andhra University, Vizag, India
Tel: 5712300489
E-mail: [email protected]

Received date: July 07, 2016; Accepted date: July 17, 2016; Published date: July 28, 2016

Citation: Teja MA, Ayyappa K, Katam S, Anusha P (2016) Analysis of Exhaust Manifold using Computational Fluid Dynamics. Fluid Mech Open Acc 3:129

Copyright: © 2016 Teja MA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



Overall engine performance of an engine can be obtained from the proper design of engine exhaust systems. With regard to stringent emission legislation in the automotive sector, there is a need design and develop suitable combustion chambers, inlet, and outlet manifold. Exhaust manifold is one of the important components which affect the engine performance. Flow through an exhaust manifold is time dependent with respect to crank angle position. In the present research work, numerical study on four-cylinder petrol engine with two exhaust manifold running at constant speed of 2800 rpm was studied. Flow through an exhaust manifold is dependent on the time since crank angle positions vary with respect to time. Unsteady state simulation can predict how an intake manifold work under real conditions. The boundary conditions are no longer constant but vary with time. The main objectives that to be studied in this work is: • To prepare the cad model in the CATIA software by using the actual parametric dimensions. • To prepare finite element model in the Computer aided analysis software by specifying the approximate element size for meshing. • To find and calculate the actual theoretical values for the input boundary conditions. • To study the flow patterns generated due to the flow of the exhaust gases from the manifold. • To study the velocity and pressure distribution in ports at maximum flow rate. • To study the static pressure drop, total pressure drop, and energy loss in the flow pattern generated in the exhaust manifold.


Related Subjects

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version