alexa Antimicrobial Photodynamic Therapy with Functionalized Fullerenes: Quantitative Structure-activity Relationships | OMICS International | Abstract
ISSN: 2157-7439

Journal of Nanomedicine & Nanotechnology
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Antimicrobial Photodynamic Therapy with Functionalized Fullerenes: Quantitative Structure-activity Relationships

Kazue Mizuno1,2, Timur Zhiyentayev1,3, Liyi Huang1,4,5, Sarwat Khalil1,6, Faria Nasim1,6, George P Tegos1,4, Hariprasad Gali7, Ashlee Jahnke7, Tim Wharton7 and Michael R Hamblin1,4,8*

1Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA

2Departments of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, Japan

3Chemistry Department, Massachusetts Institute of Technology, Cambridge, MA, USA

4Departments of Dermatology, Harvard Medical School, Boston, MA, USA

5Department of Infectious Diseases, First Affiliated College & Hospital, Guangxi Medical University, Nanning, China

6Aga Khan Medical School, Karachi, Pakistan

7Lynntech Inc, College Station, TX, USA

8Harvard-MIT Divisions of Health Sciences and Technology, Cambridge, MA, USA

*Corresponding Author:
Michael R Hamblin
BAR414, 40 Blossom Street
Massachusetts General Hospital
Boston, MA02114, USA
Fax: 617-726-8566
E-mail: [email protected]

Received Date: February 15, 2011; Accepted Date: March 31, 2011; Published Date: April 01, 2011

Citation: Mizuno K, Zhiyentayev T, Huang L, Khalil S, Nasim F, et al. (2011) Antimicrobial Photodynamic Therapy with Functionalized Fullerenes: Quantitative Structure-activity Relationships. J Nanomedic Nanotechnol 2:109. doi:10.4172/2157-7439.1000109

Copyright: © 2011 Mizuno K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Photosensitive dyes or photo sensitizers (PS) in combination with visible light and oxygen produce reactive oxygen species that kill cells in the process known as photodynamic therapy (PDT). Antimicrobial PDT employs PS that is selective for microbial cells and is a new treatment for infections. Most antimicrobial PS is based on tetrapyrrole or phenothiazinium structures that have been synthesized to carry quaternary cationic charges or basic amino groups. However we recently showed that cationic-substituted fullerene derivative were highly effective in killing a broad spectrum of microbial cells after illumination with white light. In the present report we compared a new group of synthetic fullerene derivatives that possessed either basic or quaternary amino groups as antimicrobial PS against Grampositive (Staphylococcus aureus), Gram-negative bacteria (Escherichia coli) and fungi (Candida albicans). Quantitative structure-function relationships were derived with LogP and hydrophilic lipophilic balance parameters. Compounds with non-quaternary amino groups tended to form nanoaggregates in water and were only effective against S. aureus. The most important determinant of effectiveness was an increased number of quaternary cationic groups that were widely dispersed around the fullerene cage to minimize aggregation. S. aureus was most susceptible; E. coli was intermediate, while C. albicans was the most resistant species tested. The high effectiveness of antimicrobial PDT with quaternized fullerenes suggest they may have applications in treatment of superficial infections (for instance in wounds and burns) where light penetration into tissue is not problematic.


Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7