alexa Applications of Weak, Complex Magnetic Fields that Atte
ISSN: 2155-9562

Journal of Neurology & Neurophysiology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Applications of Weak, Complex Magnetic Fields that Attenuate EAE in Rats to a Human Subject with Moderately Severe Multiple Sclerosis

Michael A Persinger*, Stanley A Koren, and Linda S St Pierre

Clinical Neuroscience Laboratory, Behavioural Neuroscience Program, Laurentian University, Sudbury, Ontario, Canada

Corresponding Author:
Michael A Persinger
Clinical Neuroscience Laboratory
Behavioural Neuroscience Program, Laurentian University
Sudbury, Ontario, Canada P3E 2C6
Tel: 01-705-675-4284
Fax: 01-705-671-3844
E-mail: [email protected]

Received date: March 21, 2014; Accepted dat: June 24, 2014; Published date: June 24, 2014

Citation: Persinger MA, Koren SA, St Pierre LS (2014) Applications of Weak, Complex Magnetic Fields that Attenuate EAE in Rats to a Human Subject with Moderately Severe Multiple Sclerosis. J Neurol Neurophysiol 5:213. doi:10.4172/2155-9562.1000213

Copyright: © 2014 Persinger MA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Background: A middle-aged woman who displayed moderately severe chronic multiple sclerosis for more than a
decade and whose symptoms did not respond to conventional treatments volunteered to whole-body exposures of
computer generated, 7 Hz weak magnetic fields during her sleep cycle for about four months.
Method: The magnetic fields were generated by custom-constructed software that generated current through two
large coils that were placed at the head and foot of the bed and extended the width of the bed. To simulate the
procedure that had markedly ameliorated experimental allergic encephalomyelitis in Lewis rats, the 7 Hz fields were
presented for 6 min once per hour, between midnight and 08 hr. The generated maximum (peak-to-peak) intensities
were either 40 nT, 10 nT or 0 nT during different 30 to 40 day blocks.
Results: Only the somatic symptoms but not the ambulatory complications were significantly reduced during the
nocturnal presentations of 40 nT exposures compared to the other conditions.
Conclusions: These results suggest that this particular configuration of magnetic fields, which were shown to
reduce the clinical severity of experimental allergic encephalomyelitis in rats, may help reduce the somatic
components of patients with chronic multiple sclerosis.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords