alexa Approximation Solution to Solving Linear Volterra-Fredholm Integro-Differential Equations of the Second Kind by Using Bernstein Polynomials Method
ISSN: 2168-9679

Journal of Applied & Computational Mathematics
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Approximation Solution to Solving Linear Volterra-Fredholm Integro-Differential Equations of the Second Kind by Using Bernstein Polynomials Method

Shahooth MK*, Ahmad RR, Din U-KS, Swidan W, Al-Husseini OK and Shahooth WK

Department of Mathematics, Faculty Science and Technology, National University of Malaysia, Malaysia

*Corresponding Author:
Shahooth MK
Department of Mathematics
Faculty Science and Technology
National University of Malaysia, Malaysia
Tel: +60389215555
E-mail: [email protected]

Received Date: February 15, 2016; Accepted Date: April 28, 2016; Published Date: May 04, 2016

Citation: Shahooth MK, Ahmad R, Salma U, Swidan W, Al-Husseini OK, et al. (2016) Approximation Solution to Solving Linear Volterra-Fredholm Integro-Differential Equations of the Second Kind by Using Bernstein Polynomials Method. J Appl Computat Math 5:298. doi:10.4172/2168-9679.1000298

Copyright: © 2016 Shahooth MK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The aim of this study is to present numerical method for solving the linear Volterra-Fredholm integro-differential equations of the second kind. This method is called the Bernestein polynomials method. This technique transforms the integro-differential equations to the system of algebraic equations. Some numerical results are presented to illustrate the efficiency and accuracy of this method.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords