alexa Assessing the Efficiency of the Diabetic Heart at Subcellular, Tissue and Organ Level
ISSN: 2329-9126

Journal of General Practice
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Assessing the Efficiency of the Diabetic Heart at Subcellular, Tissue and Organ Level

Denis S Loiselle1,3*, June-Chiew Han3, Kimberley M Mellor1,3, Toan Pham1-4, Kenneth Tran3, Soyeon (Eden) Goo1,3,
Andrew J Taberner1,2 and Anthony JR Hickey4
1 Departments of Physiology, The University of Auckland, Auckland, New Zealand
2 Departments of Engineering Science, The University of Auckland, Auckland, New Zealand
3 Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
4 School of Biological Sciences, The University of Auckland, Auckland, New Zealand
Corresponding Author : Denis Loiselle
Department of Physiology
School of Biological Sciences
The University of Auckland, Auckland, New Zealand
Tel: 64-9-373-7599
E-mail: [email protected]
Received May 01, 2014; Accepted June 26, 2014; Published June 30, 2014
Citation: Loiselle DS, Han J, Mellor KM, Pham T, Tran K, et al. (2014) Assessing the Efficiency of the Diabetic Heart at Subcellular, Tissue and Organ Level. J Gen Pract 2:168. doi: 10.4172/2329-9126.1000168
Copyright: © 2014 Loiselle D, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google
 

Abstract

In this review, we focus on the diabetic heart rather than the vascular complications of diabetes. Focus is further narrowed to a specific, but widely used, animal model: the diabetic rat heart in which diabetes has been induced by a single injection of streptozotocin. Our experimental approach is primarily biophysical and ranges from measurements made in isolated working whole-hearts, to those made from isolated left-ventricular tissues and mitochondria. Our interest is on the effect of severe diabetes on cardiac energetics, in terms of efficiency of cardiac work performance, ATP synthesis and oxygen consumption. By designing experiments to test the energetic performance of the heart and its trabeculae across a wide range of protocols, we have revealed the dependence of efficiency on afterload. This has allowed us to clarify a long-standing uncertainty in the literature; whereas the diabetic heart is unable to work against high afterloads, it nevertheless retains normal peak efficiency. But a further anomaly has been revealed. Whereas there is no evidence that the diabetic myocardium loses peak mechanical efficiency, its mitochondria demonstrate a decreased P:O ratio - i.e., a decreased bioenergetic efficiency. This decrease is consistent with an increase in the rate of production of reactive oxygen species, together with elevated proton leakage across the inner mitochondrial membrane at near maximal phosphorylating respiration states.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords