alexa Back Action on Neurotransmitters by Receptor Binding Re
ISSN: 0974-7230

Journal of Computer Science & Systems Biology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Back Action on Neurotransmitters by Receptor Binding Reveals an Optimal Receptor Density Profile

T Albash1*, JMC Bouteiller2, TW Berger2, M Baudry3 and S Haas1

1Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA

2Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA

3Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA

*Corresponding Author:
Albash T
Department of Physics and Astronomy
University of Southern California
Los Angeles, CA, USA
Tel: +1 213 740 7492
E-mail: [email protected]

Received date: October 14, 2013; Accepted date: November 04, 2013; Published date: November 15, 2013

Citation: Albash T, Bouteiller JMC, Berger TW, Baudry M, Haas S (2013) Back Action on Neurotransmitters by Receptor Binding Reveals an Optimal Receptor Density Profile. J Comput Sci Syst Biol 6:327-336. doi:10.4172/0974-7230.1000129

Copyright: © 2013 Albash T, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

We discuss how integration of back action into coupled rate equations describing dynamical biophysical processes can lead the identification of optimized structural features. This approach is applied to analyze neural receptor binding and function. In functional receptor studies, the influence of ligand binding to the receptor on free ligand concentration in the synaptic cleft is rarely considered, especially when the number of ligand molecules vastly exceeds the number of receptors. Here we evaluate the role of ligand binding/unbinding to the receptor on ligand concentration and the resulting change in receptor dynamics using the example of glutamate interaction with the AMPA receptor subtype of glutamate receptors. We find a significant difference for AMPA receptor-mediated current between the free diffusion case, where binding/unbinding is neglected, and the case when glutamate binding to AMPA receptors is taken into account for evaluating free ligand concentration. Furthermore, taking into account receptor binding/unbinding reveals new properties of the receptor/neurotransmitter system, and in particular, indicates the existence of an optimum receptor density profile with an optimal radius where the total charge and peak current are maximal, a property that cannot be captured by the free diffusion case. This may provide an explanation for the disposition of AMPA receptors and the synaptic geometry based on the optimization of the receptor-mediated current.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords