alexa Baldwinian Learning in Quantum Evolutionary Algorithms
ISSN: 2090-4908

International Journal of Swarm Intelligence and Evolutionary Computation
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Baldwinian Learning in Quantum Evolutionary Algorithms for Solving the Fine-Grained Localization Problem in Wireless Sensor Networks

Mahdi Aziz1* and Mohammad Meybodi2

1University of British Columbia Okanagan, University of British Columbia, Okanagan Kelowna, British Columbia, Canada

2AmirKabir University of Technology, Tehran

*Corresponding Author:
Mahdi Aziz
The University of British Columbia
Tel: 12508996841
E-mail: [email protected]

Received date: December 15, 2016; Accepted date: December 26, 2016; Published date: December 31, 2016

Citation: Aziz M, Meybodi M (2016) Baldwinian Learning in Quantum Evolutionary Algorithms for Solving the Fine-Grained Localization Problem in Wireless Sensor Networks. Int J Swarm Intel Evol Comput 5:146. doi:10.4172/2090-4908.1000146

Copyright: © 2016 Aziz M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



A Local Search (LS) procedure is a search facilitator, giving memetic algorithms a hand to enhance their exploitation ability resulting in converging to higher quality solutions. In this paper, using the LS procedure in the form of Baldwinian Learning (BL) a Memetic Quantum Evolutionary Algorithm (QEA) is proposed for tackling the fine grained localization problem in Wireless sensor networks (WSNs). Since the QEA can be used only for binarydomain problems like the knapsack problem, we utilize the binary-to-real mapping procedure to make it suitable for solving the localization problem in WSNs. To provide good initial positions of sensor nodes, the algorithm employs a Multi-Trilateration (MT) procedure on the best observed solutions. To test the proposed algorithm, it is first compared with its two spin-offs (the proposed algorithm without the MT procedure and the proposed algorithm without the BL and MT procedures) and then compared with six existing optimization algorithms on ten randomly generated network topologies with four different connectivity ranges. The simulation results suggest that the proposed algorithm significantly outperforms the other algorithms in terms of estimating the positions of sensor nodes in WSNs. They also point out the effectiveness of applying the MT procedure and BL method to the proposed algorithm in solving the problem.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version