alexa Bayesian Logistic Regression Modeling as a Flexible Alternative for Estimating Adjusted Risk Ratios in Studies with Common Outcomes | OMICS International | Abstract
ISSN: 2155-6180

Journal of Biometrics & Biostatistics
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Bayesian Logistic Regression Modeling as a Flexible Alternative for Estimating Adjusted Risk Ratios in Studies with Common Outcomes

Charles E Rose1*, Yi Pan1 and Andrew L Baughman2

1Division of HIV/AIDS Prevention, Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA

2Division of Global HIV/AIDS, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA

*Corresponding Author:
Charles E Rose
Division of HIV/AIDS Prevention
National Center for HIV/AIDS
Viral Hepatitis, STD, and TB Prevention
Centers for Disease Control and Prevention
1600 Clifton Road NE, Mailstop E48, Atlanta
GA 30329
Tel: +1 404-639-3311
E-mail: [email protected]

Received date: October 02, 2015; Accepted date: October 14, 2015; Published date: October 21, 2015

Citation:Rose CE, Pan Y, Baughman AL (2015) Bayesian Logistic Regression Modeling as a Flexible Alternative for Estimating Adjusted Risk Ratios in Studies with Common Outcomes. J Biom Biostat 6:253. doi:10.4172/2155-6180.1000253

Copyright: ©2015 Rose CE, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Background: For cohort and cross-sectional studies, the risk ratio (RR) is the preferred measure of effect rather than an odds ratio (OR), especially when the outcome is common (>10%). The log-binomial (LB) and Poisson models are commonly used to estimate the RR; the OR estimated using logistic regression is often used to approximate the RR when the outcome is rare. However, regardless of the prevalence of the outcome, logistic regression predicted exposed and unexposed risks may be used to estimate the RR. Because maximum likelihood estimation is used to fit the logistic model, estimation of the SE of the RR is difficult. Methods: To overcome difficulty in estimation of the SE of the RR and provide a flexible framework for modeling, we developed a Bayesian logistic regression (BLR) model to estimate the RR, with associated credible interval (CIB). We applied the BLR model to a large hypothetical cross-sectional study with categorical variables and to a small hypothetical clinical trial with a continuous variable for which the LB method did not converge. Results of the BLR model were compared to those from several commonly used RR modeling methods. Results: Our examples illustrate the Bayesian logistic regression model estimates adjusted RRs and 95% CIBs comparable to results from other methods. Adjusted risks and risk differences were easily obtained from the posterior distribution. Conclusions: The Bayesian logistic regression modeling approach compares favorably with existing RR modeling methods and provides a flexible framework for investigating confounding and effect modification on the risk scale.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7