alexa Bayesian Mixed-effects Polychotomous Response Model wit
ISSN: 2155-6180

Journal of Biometrics & Biostatistics
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Bayesian Mixed-effects Polychotomous Response Model with Application to Diverse Population Collaboration (DPC) Data

Fang Yang1, Xu-Feng Niu2 and Jianchang Lin3*

1Novartis Pharmaceuticals, Cambridge, MA 02139, USA

2Department of Statistics, Florida State University, Tallahassee, Florida 32306, USA

3Takeda Pharmaceuticals, Cambridge, MA 02139, USA

*Corresponding Author:
Yang F
Novartis Pharmaceuticals
Cambridge, MA 02139, USA
Tel: (850) 228-7421
E-mail: [email protected]

Received Date: April 20, 2017; Accepted Date: April 25, 2017; Published Date: April 28, 2017

Citation: Yang F, Niu XF, Lin J (2017) Bayesian Mixed-effects Polychotomous Response Model with Application to Diverse Population Collaboration (DPC) Data. J Biom Biostat 8: 346. doi: 10.4172/2155-6180.1000346

Copyright: © 2017 Yang F, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Polychotomous response models are commonly used in the clinical trials to analyze categorical or ordinal response data. Motivated by investigating of relationship between BMI categories and several risk factors, we carry out the application studies to examine the impact of risk factors on BMI categories, especially for categories of “Overweight” and “Obesities”. In this study, we apply the Bayesian methodology through a mixed-effects polychotomous response model to the Diverse Population Collaboration (DPC) dataset. Using the mixed-effects Bayesian polychotomous response model with uniform improper priors, we would get similar interpretations of the association between risk factors and BMI, which are in great agreement with the results documented in literature. Our application showed that the Bayesian mixed-effects polychotomous response model with improper priors is a very useful statistical technique for solving real word problems.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords