alexa BEHAVIOUR OF DOUBLE PENDULUM LOADING PLATFORM UNDER OCEAN CURRENT
ISSN ONLINE(2319-8753)PRINT(2347-6710)

International Journal of Innovative Research in Science, Engineering and Technology
Open Access

Like us on: https://twitter.com/ijirset_r
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

BEHAVIOUR OF DOUBLE PENDULUM LOADING PLATFORM UNDER OCEAN CURRENT

Moazzam Aslam1, Nazrul Islam2, Mohd Moonis Zaheer3, Mehtab Alam2
Research Scholar, Department of Civil Engineering, Jamia Millia Islamia, New Delhi, 110025, India 1 Professor, Department of Civil Engineering, Jamia Millia Islamia, New Delhi, 110025, India 2 Associate Professor, Civil Engineering Section, University Polytechnic, AMU Aligarh, 202002, India3
Related article at Pubmed, Scholar Google
 

Abstract

Articulated loading platform (ALP) is one of the promising compliant offshore structure and economically attractive for deep water conditions because of their lessened structural weight in comparison to conventional platform. The structure does not resist any force in bending due to wind, waves and currents rather forces are resisted by a large buoyancy force. In this paper, dynamic analysis of the tower under regular waves has been carried out with current forces. The Lagrangian approach has been applied for the derivation of nonlinear equations. The effects related to nonlinearity due to variable submergence, buoyancy, added mass, instantaneous position of the tower and relative-velocity squared drag force are considered in the analysis. NewMark’s-β integration scheme has been used for the solution of equation of motion in time domain. Modified Morison equation is used to model the fluid forces as these equations account for non-linearities associated with vortex shedding effects accurately in comparison to standard Morison equation. The Study has been carried out to compare the response of double hinged articulated tower under regular waves using Airy’s wave theory evaluated with Chakrabarti’s modification and that obtained by using Stokes’ fifth order nonlinear wave theory in the presence of ocean current. Stokes fifth order non-linear theory agrees closely in deep and intermediate water and it is found that for higher waves the difference in the values of responses obtained by Airy’s and Stokes’ are lesser while the difference is significantly higher for smaller waves. It is found that the deck displacement response as well as hinge rotation and hinge shear obtained using Stokes’ theory are lesser than that obtained using the Airy’s theory.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords