alexa Beneficial Microbes and Phosphorus Management Influence Dry Matter Partitioning and Accumulation in Wheat (Triticum aestivum L.) with and without Moisture Stress Condition
ISSN: 1948-5948

Journal of Microbial & Biochemical Technology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Beneficial Microbes and Phosphorus Management Influence Dry Matter Partitioning and Accumulation in Wheat (Triticum aestivum L.) with and without Moisture Stress Condition

Amanullah*, Siddique Khan and Asim Muhammad

Department of Agronomy, The University of Agriculture Peshawar, Pakistan

*Corresponding Author:
Department of Agronomy
The University of Agriculture
Peshawar, Pakistan
Tel: +92 91 9216518
E-mail: [email protected]

Received Date: October 30, 2015; Accepted Date: November 07, 2015; Published Date: November 14, 2015

Citation: Amanullah, Khan S, Muhammad A (2015) Beneficial Microbes and Phosphorus Management Influence Dry Matter Partitioning and Accumulation in Wheat (Triticum aestivum L.) With and Without Moisture Stress Condition. J Microb Biochem Technol 7:410-416. doi:10.4172/1948-5948.1000247

Copyright: © 2015 Amanullah, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



Field experiment was conducted to investigate the impact of beneficial microorganism (BMO) and phosphorus (P) application on dry matter (DM) accumulation and partitioning in spring wheat (Triticum aestivum L., cv. Siren) under full irrigated (no moisture stress) and limited irrigated (dryland or moisture stress) conditions. The experiment was conducted at the Agronomy Research Farm, The University of Agriculture Peshawar during winter 2012-13. The experiment under both moisture conditions was laid out in randomized complete block design using three replications. The results revealed that DM accumulation and partitioning into leaf, stem and spike was significantly higher in wheat under irrigated than dryland wheat. The treated plots (rest) had higher total DM accumulation and partitioned more DM into leaf, stem and spike than control at both anthesis and physiological maturity (PM). Application of P and BMO at the highest rates (90 kg P ha-1 and 30 L ha-1, respectively) had accumulated more total DM and had partitioned more DM into leaf, stem and spike at the two growth stages. We found that under irrigated condition, increase in both P and BMO levels (90 kg P ha-1 and 30 L ha-1, respectively) and under dryland condition the intermediate levels of both P and BMO (60 kg P ha-1 and 20 L ha-1, respectively) had produced higher total DM and partitioned more DM into various parts at both anthesis and PM. The percent DM partitioning into leaf was more (36%) than stem and spike (each 32%) at anthesis stage; while at PM, more DM was partitioned into spike (59%) than stem (21%) and leaf (20%). Increase in DM partitioning into spike under both irrigated and dryland wheat with proper P and BMO management showed positive relationship with grain yield that resulted in higher growers income in the study area.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version