alexa BioCAE: A New Strategy of Complex Biological Systems fo
ISSN: 2157-7552

Journal of Tissue Science & Engineering
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

BioCAE: A New Strategy of Complex Biological Systems for Biofabrication of Tissues and Organs

To read the full article Peer-reviewed Article PDF image


Biofabrication as an interdisciplinary area is fostering new knowledge and integration of areas like nanotechnology, chemistry, biology, physics, materials science, control systems, among many others, necessary to accomplish the challenge of bioengineering functional complex tissues. The emergence of integrated platforms and systems biology to understand complex biological systems in multiscale levels will enable the prediction and creation of biofabricated biological structures. This systematic analysis (meta-analysis) or integrated platforms for estimating biological process have been named as BioCAE, which will become the key for important steps of the biofabrication processes. Biological Computational Aided Engineering (BioCAE) is a new computational approach to understanding and bioengineer complex tissues (biofabrication) using a combination of different methods as multiscale modelling, computer simulations, data mining and systems biology. In addition, multi-agent systems (MAS), which are composed of different interacting computing entities called agents, also provide an interesting way to design and implement simulations of biological systems, integrating them with all steps of the BioCAE. MAS as a part of computational science have become a growing area to manipulate and solve complex problems. This paper presents an approach that will allow predicting the development and behavior of different biological processes such as molecular networks, gene interactions, cells, tissues and organs due to its flexibility, beyond to provide a new outlook in the biofabrication of tissues and organs.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version