GET THE APP

..

Nuclear Medicine & Radiation Therapy

ISSN: 2155-9619

Open Access

Biochroma - A New and Patented Technology for Processing Radioactive Wastewater from Nuclear Medicine Therapy Facilities in Hospitals and Clinics

Abstract

José Canga Rodríguez

While undergoing nuclear medicine therapy using 131I radioisotope at a hospital, patients generate wastewater with a considerable amount of radioactivity. Thus, contamination can reach levels of as much as 90% of the radioactive dose administered to the patient, depending on the type of therapy the patient underwent [1,2]. Given its radioactive half life of 8.02070 days, there is a significant risk of 131I radioisotope accumulation after its discharge into the sewer network (through sanitary wastewater) and into the environment. Therefore, it is advisable to collect this effluent in a separate system for its treatment prior to final discharge to the municipal sewer [3-8]. In spite of the clear scientific evidence of the severe contamination of this specific type of wastewater, a harmonised legal framework has still not been devised for all member states of the European Union. A survey conducted by the Radiological Protection Institute of Ireland clearly spotlights the discrepancies existing among concepts for managing radioactively contaminated effluents. The survey examined thirteen countries, six of which stipulate the installation of wastewater treatment systems (Table 1), three of which permit the wastewater to be discharged directly following dilution (Table 2) and four of which permit both options (Table 3), depending on the specific conditions of the respective sanitary system.

PDF

Share this article

Google Scholar citation report
Citations: 706

Nuclear Medicine & Radiation Therapy received 706 citations as per Google Scholar report

Nuclear Medicine & Radiation Therapy peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward