alexa Bioconversion of Non-Detoxified Hemicellulose Hydrolysates to Xylitol by Halotolerant Yeast Debaryomyces nepalensis NCYC 3413 | OMICS International | Abstract
ISSN: 1948-5948

Journal of Microbial & Biochemical Technology
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Bioconversion of Non-Detoxified Hemicellulose Hydrolysates to Xylitol by Halotolerant Yeast Debaryomyces nepalensis NCYC 3413

Bhaskar Paidimuddala and Sathyanarayana N Gummadi*

Applied and Industrial Microbiology Laboratory, Department of Biotechnology, IIT Madras, Chennai, India

*Corresponding Author:
Sathyanarayana N Gummadi
Professor, Applied and Industrial Microbiology Laboratory
Department of Biotechnology
Bhupat and Jyoti Mehta School of Biosciences
Indian Institute of Technology Madras, Chennai 600 036, India
Tel: +91-44-2257-4114/+91-44-2257-6114
E-mail: [email protected]

Received date: June 23, 2014; Accepted date: July 28, 2014; Published date: August 04, 2014

Citation: Paidimuddala B, Gummadi SN (2014) Bioconversion of Non-Detoxified Hemicellulose Hydrolysates to Xylitol by Halotolerant Yeast Debaryomyces nepalensis NCYC 3413. J Microb Biochem Technol 6:327-333. doi: 10.4172/1948-5948.1000163

Copyright: © 2014 Finore I, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Lignocellulosic materials are one of the most abundant renewable resources whose exploitation for the production of biochemicals and biofuels is the major challenge in the area of industrial biotechnology due to inhibition of growth and product formation by the toxic compounds released upon their hydrolysis. Indeed the bioprocess that can produce industrial products from hemicellulose hydrolysates in the presence of toxic compounds is economical than the process which involves detoxification. In this study, the ability of halotolerant strain Debaryomyces nepalensis NCYC 3413 to convert non-detoxified xylose enriched hemicellulose hydrolysates from corn cobs, rice straw, sugarcane bagasse and wheat straw to xylitol was evaluated. It was found that this strain has the capability to grow in all hemicellulose hydrolysates and convert xylose to xylitol without detoxification of hydrolysates. The maximum xylitol concentration of 14.6 g L-1 was obtained from corn cobs and wheat straw with productivities of 0.16 and 0.20 g L-1 h-1 respectively at a yield of 0.30 g g-1. Whereas sugarcane bagasse and rice straw gave xylitol yields of 0.31 and 0.32 g g-1 respectively with 14.2 g L-1 maximum xylitol and productivities were calculated to be 0.20 and 0.15 g L-1 h-1 respectively. The presence of high glucose hindered xylitol production by producing ethanol. Based on our findings, we suggest that (i) D. nepalensis is a promising strain for ecofriendly xylitol production as it exhibits broad specificity to lignocellulose substrates, fermentation of mixed sugars and (ii) tolerance towards lignocellulosic inhibitors making the process more economical.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7