alexa Biodegradation of Bitumen in Soil and Its Enhancement by Inorganic Fertilizer and Oxygen Release Compound: Experimental Analysis and Kinetic Modelling
ISSN: 1948-5948

Journal of Microbial & Biochemical Technology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Biodegradation of Bitumen in Soil and Its Enhancement by Inorganic Fertilizer and Oxygen Release Compound: Experimental Analysis and Kinetic Modelling

Samuel E Agarry1* and Kigho M Oghenejoboh2

1Biochemical Engineering and Chemical Engineering Biotechnology Laboratory, Department of Chemical Engineering, Ladoke Akintola University of Technology, Nigeria

2Department of Chemical Engineering, Delta State University, Nigeria

*Corresponding Author:
Samuel E Agarry
Biochemical Engineering and Chemical Engineering Biotechnology Laboratory
Department of Chemical Engineering
Ladoke Akintola University of Technology
P. M. B. 4000, Ogbomoso, Nigeria
Tel/Fax: +23 4805 5529 705
E-mail: [email protected]

Received date: July 20, 2014; Accepted date: August 14, 2014; Published date: August 21, 2014

Citation: Agarry SE, Oghenejoboh KM (2014) Biodegradation of Bitumen in Soil and Its Enhancement by Inorganic Fertilizer and Oxygen Release Compound: Experimental Analysis and Kinetic Modelling. J Microbial Biochem Technol S4:002. doi: 10.4172/1948-5948.S4-002

Copyright: © 2014 Agarry SE, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

The objective of this work was to investigate and evaluate the effect of inorganic nutrient (NPK fertilizer), hydrogen peroxide and their combinations on the kinetics of bitumen degradation by autochthonous microorganisms in the soil. The study was carried out by artificially contaminating an un-impacted tropical soil with 40 g/kg of bitumen in plastic bins and amended with various amount of NPK fertilizer (1.63 g, 2.10 g and 2.56 g), hydrogen peroxide (0.5 g and 1.0 g) and combinations of NPK fertilizer and hydrogen peroxide (2.13 g, 2.60 g and 3.06 g), respectively. The bioremediation was carried out for 21 days. Results showed that inorganic NPK fertilizer, hydrogen peroxide and their combinations stimulated microbial growth and enhanced bitumen biodegradation. The bacterial count and percentage total petroleum hydrocarbon degradation relatively increased with increase in the amount of inorganic nutrient and oxygen release compound used in this study. More than 50% of the hydrocarbons were degraded within each remediation period. The combined addition of inorganic NPK fertilizer and hydrogen peroxide provided the highest percentage biodegradation (>60%). Under abiotic conditions, no total petroleum hydrocarbon removal was observed while a maximum of 10.8% total petroleum hydrocarbons removal was obtained in unamended soil (natural attenuation) experiment. A first-order kinetic model successfully described the bitumen biodegradation. The model revealed that bitumen contaminated-soil microcosms amended with inorganic nutrient and oxygen release compound had higher biodegradation rate constants, as well as lower half-life times, than unamended soil (natural attenuation) remediation system. The biodegradation rate constant was higher with lower half life time as the amount of inorganic nutrient and oxygen release compound in soil increased.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords