GET THE APP

..

Journal of Tissue Science and Engineering

ISSN: 2157-7552

Open Access

Biomechanism Profile of Intervertebral Discs (IVD): Strategies to Successful Tissue Engineering for Spinal Healing by Reinforced Composite Structure

Abstract

Kunal Singha and Mrinal Singha

Complex multi-lamellar biocomposite structure of Intervertebral Disc (IVD) imparts flexibility between adjacent vertebras, as well as allows transmission of loads from one vertebra to the next along the spine. The disc has a 15- 25 concentric layered laminate structure; each layer is reinforced by collagen fibers which are aligned at approximately 30 degree angle in successive layers with respect to the transverse plane of the disc. This fibrous organization is critical to the proper biomechanical functioning of the disc, such as to convert compressive force to lateral force, to withstand extrinsic tensile stresses (circumferential, longitudinal and torsion). As a result spine becomes flexible to bend and twist. With the regular aging the disc gets dried up lost its flexibility and biomechanical elasticity. That’s why we need tissue engineering of that degenerated tissue to make a proper ailment of that body part by the help of some textile fibers like silk- hydrogel, CMC, PVA- collagen, PGA – chitosan composites. The synthetic polymer has shown great promise for easiness of production, variability in properties and biodegradability and biocompatibity and non-immunogenic response inside the human spinal body for the novel cause of removal and restoration of degenerated human intervertebral disc.

PDF

Share this article

Google Scholar citation report
Citations: 807

Journal of Tissue Science and Engineering received 807 citations as per Google Scholar report

Journal of Tissue Science and Engineering peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward