GET THE APP

..

Hydrology: Current Research

ISSN: 2157-7587

Open Access

Biostimulator and Biodegradable Chelator to Pytoextract not Very Toxic Cu and Zn

Abstract

Yeh TY

Taiwan spent too much expenditure to remove not very toxic metals Cu and Zn. The biosorption mechanism of metal removal (copper, Cu and zinc, Zn) by four phytoremediation macrophytes biomasses including sunflower (Helianthus annuus), Chinese cabbage (Brassica campestris), cattail (Typha latifolia), and reed (Phragmites communis) was investigated in this study. The primary objectives were exploring the potential of reusing these bio-wastes after harvesting from phytoremediation operations. Based on the surface area, zeta potential, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) investigations, Chinese cabbage biomass presented the highest metal adsorption property while both cattail and reed revealed a lower adsorption capability for both metals tested. The equilibrium adsorption rate between biomass and metal occurred very fast during the first 10 min. The metal adsorption data were fitted with the Langmuir and Freundlich isotherms and presented that the Langmuir isotherm was the best fitted model for all biomass tested. All tested biomasses are fast growing plants with fairly high biomass production that are able to accumulate metals. The Langmuir model was used to calculate maximum adsorption capacity and related adsorption parameters in this study. The results revealed that the maximum metal adsorption capacity Qmax was in the order of Chinese cabbage (Cu: 2000; Zn: 1111 mg/kg)> sunflower (Cu: 1482; Zn:769 mg/kg)> reed (Cu: 238; Zn: 161 mg/kg)> cattail (Cu: 200; Zn: 133 mg/kg). The harvested sunflower, Chinese cabbage, cattail, and reed biomass possess the potential to be employed as biosorbents to remove Cu and Zn from aqueous solutions. Adsorption isotherms derived in this study might be crucial information for practical design and operation of adsorption engineering processes and prediction of relation between reused macrophyte biosorbents and heavy metal adsorbates.

PDF

Share this article

Google Scholar citation report
Citations: 2843

Hydrology: Current Research received 2843 citations as per Google Scholar report

Hydrology: Current Research peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward