alexa Blood Sampled Through Dried Blood Spots (DBS) Exhibits Diminished Ex vivo Metabolism Compared to Whole Blood Through Use of a Kinetic Isotope-Labeling Metabolomics Approach
ISSN: 2161-1009

Biochemistry & Analytical Biochemistry
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Blood Sampled Through Dried Blood Spots (DBS) Exhibits Diminished Ex vivo Metabolism Compared to Whole Blood Through Use of a Kinetic Isotope-Labeling Metabolomics Approach

Collin Hill1, Jeremy Drolet1, Mark D Kellogg2, Vladimir Tolstikov1, Niven R Narain1 and Michael A Kiebish1*

1Department of Precision Medicine, BERG, LLC, 500 Old Connecticut Path, Framingham, MA, 01701, USA

2Department of Laboratory Medicine and Pathology, Harvard Medical School, Boston Childrens’ Hospital, Boston, MA, 02115, USA

*Corresponding Author:
Michael Kiebish
Chief Precision Medicine Officer
BERG, LLC, 500 Old Connecticut Path
Building B, Framingham, MA 01701, USA
Tel: (617) 588-2245
E-mail: [email protected]

Received Date: June 02, 2017; Accepted Date: June 26, 2017; Published Date: June 29, 2017

Citation: Hill C, Drolet J, Kellogg MD, Tolstikov V, Narain NR, et al. (2017) Blood Sampled Through Dried Blood Spots (DBS) Exhibits Diminished Ex vivo Metabolism Compared to Whole Blood Through Use of a Kinetic Isotope-Labeling Metabolomics Approach. Biochem Anal Biochem 6: 325. doi: 10.4172/2161-1009.1000325

Copyright: © 2017 Hill C, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Blood is the primary matrix for metabolite profiling, providing a means for biomarker identification, pharmacokinetic/ pharmacodynamic analysis and disease monitoring. Conventional methodologies of blood sample collection require blood drawn by venous puncture. However, this technique allows for residual ex vivo metabolic activity of the blood matrix, thus presenting a challenge to capturing a physiologically representative readout of the metabolome. Blood that is not immediately processed is subjected to extended periods of ex vivo metabolism. Even when samples are transported by cold storage, some enzymatic processes remain active. The dried blood spot (DBS) collection technique renders cells metabolically inactive in a short span of time. We demonstrate that whole blood deposited onto a DBS card decreases uptake and metabolism of U13C-glucose after 4 hours, as analyzed by mass spectrometry. The cells also exhibit no further metabolic activity for up to 24 hours, whilst blood stored in a collection tube continue to actively uptake and metabolize U13C-glucose for up to 24 hours post-collection. Given that glycolysis is one of the most active pathways in blood cells, the ability to arrest glucose metabolism in a short amount of time is important to accurately capture the metabolite profile at the time of collection. We assert that this likely extends beyond glucose metabolism, as blood cells are capable of taking up other extracellular nutrients. We believe blood collection using the DBS technique offers an informative readout of the metabolome, compared to conventional blood collection, which is critical for population health and precision medicine applications.

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords