alexa Breast Cancer Tumour Diagnosis from Mammography Images
ISSN ONLINE(2278-8875) PRINT (2320-3765)

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Breast Cancer Tumour Diagnosis from Mammography Images Using Wavelet Transform and Hidden Markov Model

 
To read the full article Peer-reviewed Article PDF image

Abstract

Breast cancer is one of the most important reasons of death within women 15 to 54 years old. A woman dies of breast cancer every 13 minutes and 12.6 percent of women are infected during their life. Although mammography is one of the most effective ways of detecting disease; but still it has deficiencies and limitations. Cancerous lesions may not be diagnosed or non-cancerous lesions are detected as cancer in the interpretation of mammography images. Recently, quality of mammography images is increased and image features are extracted using image processing science in order to help radiologists in detection and diagnosis of cancer masses. This will increase detection speed and accuracy rate. In this study, a new method is proposed for detection of suspicious areas of breast cancer tumoursbased on wavelet and hidden Markov model. According to combination of these two methods, the efficiency has been increased compared to method of previous works. In this research, cancer masses are detected as well as percentage of cancer masses becomes clear; this makes to estimate mass growth rate. In this paper, Markov model with tree structure is used in order to extract statistical properties of wavelet transform components. Markov model has special ability in extracting information related to edges and protruding parts of image context due to its features which can accurately detect cancer areas. In this research we try to estimate the appropriate label (clustering) of pixels from a checked image in order to segment cancer areas. Certain joint distribution is assumed for pixels of a region or class; then, the maximum similarity of different areas of an image under review is checked using ML method. Combination of MIAS database and Paden including 150 images is used in order to test the proposed method. The results indicate that proposed method is more accurate compared to methods that use only wavelet transforms method. Detection rate of proposed method is 96% that is improved 24.5% compared to wavelet transform with detection rate of 71.5 percent.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords