alexa Calculation of Critical Distance in Faulted Meshed Power System | OMICS International
ISSN: 2229-8711

Global Journal of Technology and Optimization
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Calculation of Critical Distance in Faulted Meshed Power System

Hedaya Alasooly*

University of Swaziland, Swaziland

*Corresponding Author:
Hedaya Alasooly
University of Swaziland, Swaziland
E-mail: [email protected]

Received date: March 2011; Revised date: July 2011; Accepted date: September 2011

Abstract

Faults studies form an important part of power system analysis. The problem consists of determining bus voltages and line currents during various types of faults. If the fault location is known, the problem is easy to solve. But if the fault location is unknown, the problem will become more complex. The problem of fault location has been studied deeply for transmission lines due its importance in the power system. Different methods for sags prediction have been developed. The most used are “critical distance” and “fault positions”. The critical distance method is based on the concept of potential divider, which is correctly and easily applicable to a radial network. The extension of this method to large meshed networks has been discussed but yet non of the existing researches could provide proper solution for the problem. In this paper, an elegant, analytical method is developed to calculate the critical distance of a three-phase fault on transmission line that will cause certain voltage dip at a bus in meshed power system. The method is based in Gauss-Seidel iteration. The proposed method is tested on 6-bus transmission network and the results showed significant advantages of the proposed method .

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version