alexa Ceragenins as Mimics of Endogenous Antimicrobial Peptides
ISSN: 2472-1212

Journal of Antimicrobial Agents
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Ceragenins as Mimics of Endogenous Antimicrobial Peptides

Marjan M Hashemi1, Brett S Holden1, Bonita Durnaś2, Robert Bucki3 and Paul B Savage1*

1Department of Chemistry and Biochemistry, Brigham Young University, Provo, USA

2Department of Microbiology and Immunology, The Faculty of Health Sciences, Jan Kochanowski University, Kielce, Poland

3Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Poland

*Corresponding Author:
Paul B Savage
Department of Chemistry and Biochemistry
Brigham Young University, C100 BNSN, Provo, USA
Tel: 1 801 422 4020
Fax: 1 801 422 0153
E-mail: [email protected]

Received date: April 18, 2017; Accepted date: May 10, 2017; Published date: May 17, 2017

Citation: Hashemi MM, Holden BS, Durnas B, Bucki R, Savage PB (2017) Ceragenins as Mimics of Endogenous Antimicrobial Peptides. J Antimicrob Agents 3:141. doi:10.4172/2472-1212.1000141

Copyright: © 2017 Hashemi MM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Ceragenins are small molecule mimics of endogenous antimicrobial peptides (AMPs), and as such display broadspectrum antimicrobial activity. These molecules are derived from a common bile acid and can be prepared at a large scale. Because ceragenins are not peptide based, they are not substrates for proteases. Gram-negative and positive bacteria are susceptible to ceragenins, including drug resistant organisms. Although ceragenins and colistin have common features, ceragenins retain full antibacterial activity against colistin-resistant Gram-negative bacteria. Bactericidal activity of ceragenins involves selective association with bacterial membranes followed by membrane depolarization. Due to this mechanism of action, which provides bactericidal activity against sessile bacteria, ceragenins eradicate established biofilms. Lipid-enveloped viruses (e.g. vaccinia) are deactivated by ceragenins, and topical application of a lead ceragenin decreases transmission of the virus in skin in a murine model. More recently, the activities of ceragenins against fungal pathogens have been reported, with minimum inhibition concentrations comparable to clinically used anti-fungal agents. In addition to antimicrobial activities, ceragenins have been shown to display some of the “secondary” activities attributed to AMPs. In vivo use of ceragenins to eradicate biofilms, prevent infection and accelerate bone growth demonstrate some of the types of applications in which ceragenins may be used to augment or replace activities of endogenous AMPs.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords