Abstract

Characterization of a Novel Cell Line (HCH-3) Derived from a Human Ovarian Clear Cell Carcinoma

Takashi Yamada, Kimiaki Hattori, Hidetoshi Satomi, Tadashi Okazaki, Hiroshi Mori and Yoshinobu Hirose

Objective: Established cell lines are important materials helping a medical basic research. The reports listed in detail of the cell line derived from an ovarian clear cell carcinoma were only 14, so far. Owing to little information, the establishment of malignant tumor cell line with individual characteristics is especially significant to research this disorder. Therefore, this study was carried out to establish and characterize a new human cell line derived from ovarian clear cell carcinoma.

Methods: The cell line HCH-3 was established from a left ovarian tumor of a 41-year-old woman. Characters of the cell line investigated included morphology, chromosome analysis, heterotransplantation, tumor markers, chemosensitivity, and cancer genes.

Results: This cell line has been growing well for 206 months and subcultured more than 50 times. Monolayer cultured cells were multipolar in shape, showing a cobble stone appearance and a tendency of multilayering without contact inhibition. They showed a human karyotype with a modal chromosomal number in the hypotetraploid range. The cells could be transplanted into the subcutis of SCID mice and made tumors looking like the original tumor. HCH-3 cells demonstrated both CA 125 and CA19-9 which were detected immunohistochemically in the original tumor and the heterotransplanted tumor. The cells were not sensitive to agents generally managed in the treatment of gynecological cancers by MTT assay. KRAS and TP53 mutations were discovered in hotspot locations of 50 cancer genes.

Conclusion: HCH-3 is an ovarian clear cell carcinoma cell line in which CA 125 and CA19-9 expression have been clarified. Mutations were discovered in KRAS and TP53 genes. This newly established cell line may be helpful in basic study on ovarian clear cell carcinoma, the etiology of which is not yet entirely recognized.