alexa Chondrogenic Differentiation of Human Chondrocytes and Stem Cells in Different Cell Culture Systems Using IGF-1-Coupled Particles | OMICS International | Abstract
ISSN: 2157-7552

Journal of Tissue Science & Engineering
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Chondrogenic Differentiation of Human Chondrocytes and Stem Cells in Different Cell Culture Systems Using IGF-1-Coupled Particles

Hiemer B1*, Krogull M1, Zander K1, Grüttner C2, Bergschmidt P1,3,Tischer T1, Wree A4, Bader R1and Pasold J1

1Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Centre, Doberaner Strasse 142, 18057 Rostock, Germany

2Micromod Partikeltechnology GmbH, Friedrich-Barnewitz-Str.4, 18119 Rostock, Germany

3Department of Orthopaedics, Klinikum Südstadt Rostock,Traumatology and Handsurgery, Südring 81, 18055 Rostock, Germany

4Rostock University Medical Centre,Institute of Anatomy, Gertrudenstrasse 9, 18057 Rostock, Germany

*Corresponding Author:
Bettina Hiemer
Rostock University Medical Centre
Department of Orthopedics, Biomechanics and Implant Technology
Research Laboratory, Doberaner Strasse 142 Rostock 18057, Germany
Tel: +49 381 494 9359
Fax: +49 381 494 9308
E-mail: [email protected]

Received date: May 29, 2017; Accepted date: July 11, 2017; Published date: July 18, 2017

Citation: Hiemer B, Krogull M, Zander K, Grüttner C, Bergschmidt P, et al. (2017) Chondrogenic Differentiation of Human Chondrocytes and Stem Cells in Different Cell Culture Systems Using IGF-1-Coupled Particles. J Tissue Sci Eng 8:203. doi:10.4172/2157-7552.1000203

Copyright: © 2017 Hiemer B, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Various cell-based therapies use the transplantation of ex vivo cultured chondrocytes or stem cells to support repair of cartilage defects. Cell expansion in vitro is required prior to transplantation accompanied by cell dedifferentiation, resulting in unwanted fibrocartilage formation in vivo. Targeted application of growth factors during in vitro cultivation is intended to enhance chondrogenic differentiation of cells. In previous studies, collagen-based scaffolds enriched with silica particles coupled with the insulin-like growth factor (IGF) 1 were tested, concerning their suitability to increase the in vitro redifferentiation of human chondrocytes. Accordingly, in the present study chondrogenic differentiation potential of IGF-1-coupled particles was investigated using human chondrocytes cultured in scaffold-free spheroid pellet culture. Further, influence of IGF-1-coupled particles on mesenchymal stem cells derived from bone marrow (BM-MSCs) cultured onto collagen–based scaffold or in pellet culture was examined as well pellet culture was examined. Chondrogenic differentiation was induced by the growth factor IGF-1 applied as I) soluble IGF-1 or II) conjugated to red fluorescent silica particles. In addition, control silica particles conjugated with NH2 were used to exclude adverse side effects. Besides cell proliferation, collagen type II and glycosaminoglycan synthesis was quantified and histological staining performed to investigate the chondrogenic differentiation. In pellet culture, IGF-1-coupled particles were applied during the pellet formation only. Traceable red fluorescent particles showed homogenous distribution within the pellets. Adverse effects were not detected. Human chondrocyte pellets displayed significantly increased collagen type II synthesis using IGF-1-coupled particles, compared to soluble IGF-1. Independent of the application mode, induction of chondrogenic differentiation of BM-MSCs cultured in pellets was not suitable with the addition of IGF-1 only. However, BM-MSCs cultivation onto collagen-based scaffold enriched with IGF-1-coupled particle showed superior glycosaminoglycan synthesis, compared to soluble IGF-1 application. Using IGF-1 coupled to particles within a three-dimensional matrix resulted in an increased stimulatory chondrogenic effect, indicating a promising tool for controlled growth factor delivery during treatment of cartilage lesion.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version