alexa Climate Projection Outlook in Lake Haramaya Watershed,
ISSN: 2157-7587

Hydrology: Current Research
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Climate Projection Outlook in Lake Haramaya Watershed, Eastern Ethiopia

Eba Muluneh Sorecha*

School of Natural Resources Management and Environmental Sciences, Haramaya University, Dire Dawa, Ethiopia

*Corresponding Author:
Eba Muluneh Sorecha
School of Natural Resources Management and Environmental Sciences
Haramaya University, PO Box: 138, Dire Dawa
Ethiopia
Tel: +251946428388
E-mail: [email protected]

Received date: May 08, 2017; Accepted date: May 16, 2017; Published date: May 23, 2017

Citation: Sorecha EM (2017) Climate Projection Outlook in Lake Haramaya Watershed, Eastern Ethiopia. Hydrol Current Res 8: 275. doi: 10.4172/2157- 7587.1000275

Copyright: © 2017 Sorecha EM. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Smallholder farmers in Ethiopia generally face widespread problems driven by climate change. For this reason, the study of climate change at watershed level might be critical to solve the problem from its root. The study was conducted in Lake Haramaya Watershed, Eastern Ethiopia to project ad characterize the climatic condition of the coming thirty years (2020-2050). Thirty-four years of rainfall, maximum and minimum temperature baseline data were collected from National Meteorological Agency of Ethiopia. Whereas, thirty years (2020-2050) projected rainfall, maximum and minimum temperatures were downscaled from MarkSim web version for IPCC AR5 data (CMIP5) using five climate models namely: BCC-CSM1-1, CSIRO-Mk3-6-0, HadGEM2-ES, MIROC-ESM, MIROCESM- CHEM, and MIROC5 under two Representative Concentration Pathways (RCPs): RCP4.5 and RCP8.5. The results of the study revealed that the annual mean rainfall will be increased by 20.70 and 24.14% under RCP4.5 and RCP8.5, respectively compared to baseline average value of 777.51 mm/yr. The annual rainfall under RCP4.5 ranges from 769.6 to 1090 mm/yr having the CV value of about 11%; whereas, under RCP8.5, it will range from 771.9 to 1129 mm/yr with the CV value of 13.17%. Kiremt (JJAS) season rainfall will increase from the baseline of 107.55 mm/yr to 135.79 and 136.27 mm/yr under RCP4.5 and RCP8.5, respectively. Moreover, a study indicated that the annual and seasonal temperature under RCP4.5 and RCP8.5 will be expected to increase during 2020-2050 period. Under high emission scenario of RCP8.5, the annual maximum temperature could rise from 24.73°C baseline to 25.41°C.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords