alexa Clinical Applications of Molecular Technologies in Hema
ISSN: 2168-9784

Journal of Medical Diagnostic Methods
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Clinical Applications of Molecular Technologies in Hematology

Esther Pui-Ting Lam1, Charles Ming-Lok Chan2, Nancy Bo-Yin Tsui1, Thomas Chi-Chuen Au2, Kit-Fai Wong3, Heong-Ting Wong4, Ka-Yue Chiu3, Lawrence Wing-Chi Chan1, Benjamin Yat-Ming Yung1* and Sze-Chuen Cesar Wong1,2*

1Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China

2State Key Laboratory in Oncology in South China, Sir Y K Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China

3Department of Pathology, Queen Elizabeth Hospital, Gascoigne Road, Kowloon, Hong Kong Special Administrative Region, China

4Department of Pathology, Kiang Wu Hospital, Macau Special Administrative Region, China

*Corresponding Author:
Sze-Chuen Cesar Wong and Benjamin Yat-Ming Yung
Department of Health Technology and Informatics
Faculty of Health and Social Sciences, Hong Kong Polytechnic University
Hong Kong
Tel: 852-3400-8584
E-mail: [email protected]; [email protected]

Received date: May 18, 2013; Accepted date: August 13, 2013; Published date: August 16, 2013

Citation: Lam EPT, Chan CML, Tsui NBY, Au TCC, So CC, et al. (2013) Clinical Applications of Molecular Technologies in Hematology. J Med Diagn Meth 2: 130. doi:10.4172/2168-9784.1000130

Copyright: © 2013 Lam EPT, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



The rapid emergence of molecular diagnostic platforms has revolutionized the diagnostic approaches in hematology laboratory. Fluorescence in-situ hybridization, polymerase chain reaction and DNA sequencing are common techniques used in routine clinical laboratories for the diagnosis of hematological diseases. Different molecular techniques are indicated in different situations. This paper describes the utility of common molecular techniques. Fluorescence in-situ hybridization is specific for detection of chromosomal abnormalities using fluorescent labeled targeting probe. Polymerase chain reaction amplifies target DNA and reverse transcription polymerase chain reaction amplifies target RNA for the analysis of gene and its expression level. Real-time polymerase chain reaction is highly sensitive for detection of minimal residual disease in hemic malignancies. Gap-polymerase chain reaction is often employed for diagnosis of large deletions such as in alpha thalassemia. Allele-specific polymerase chain reaction is commonly used for single nucleotide polymorphism detection which is common in beta thalassemia, myeloproliferative neoplasm and acute leukemia. Inverse shifting-polymerase chain reaction can be employed for the detection of large genetic rearrangements such as those seen in hemophilia A. For genetically complex diseases such as hemophilia A, which involves a great variety of mutations in large genes, high resolution melting analysis can be used to scan for point mutations. Any suspected mutations are confirmed using post-PCR technologies, such as DNA sequencing. Although conventional diagnostic methods are able to provide a basic analysis in most cases, molecular technologies generate valuable genetic information that can refine diagnosis, better predict prognosis and facilitate disease monitoring.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version