Awards Nomination 20+ Million Readerbase
Indexed In
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • CiteFactor
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • Centre for Agriculture and Biosciences International (CABI)
  • RefSeek
  • Directory of Research Journal Indexing (DRJI)
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • Scholarsteer
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • Google Scholar
Share This Page
Journal Flyer
Flyer image

Abstract

Cloning and Expression of the Pathogenicity-Related Genes of Oidium heveae in the Infection Process

Yaqi Sun, Peng Liang, Qiguang He, Wenbo Liu, Rong Di, Weiguo Miao and Fucong Zheng

Oidium heveae B.A. Steinmann is a biotrophic fungus that infects rubber tree and causes powdery mildew disease, resulting in significant annual rubber yield losses worldwide. Researches on O. heveae in China had been limited on the cytological observation for the interaction of O. heveae with rubber tree, and the environment factors, such as temperature on the disease development. There had been scarce research on the infection mechanism of this important fungal pathogen at the molecular level. Pathogenicity-related genes of O. heveae are important for us to understand its infection process, which can potentially become targets for disease control. We have characterized eleven pathogenicity-related genes of O. heveae by genomics and transcriptomic studies. Four genes are involved in fungal metabolism, and the other three are related to fungal growth. Four genes were found to encode hypothetical proteins. The expression of these genes was further studied by qRT-PCR. Our results indicated that the expression of the metabolism-related Oh-PC2 gene encoding phosphoenolpyruvate carboxykinase (PEPCK) was up-regulated at 3 dpi (day post infection). Our data also demonstrated that at 3 dpi during the hyphae formation stage, the expression of all three fungal growth-related genes Oh-AAA-peroxin, Oh-RNP and Oh-Imp was up-regulated. Additionally, the expression of at least three O. heveae genes encoding hypothetical proteins was shown to increase at 3 dpi. Our results have provided novel insight to understanding the molecular mechanisms of O. heveae pathogenicity during its infection of rubber tree