alexa Cluster Analysis of Philippine Tropical Cyclone Climato
ISSN : 2332-2594

Journal of Climatology & Weather Forecasting
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Cluster Analysis of Philippine Tropical Cyclone Climatology: Applications to Forecasting

Corporal-Lodangco IL* and Leslie LM
School of Meteorology, University of Oklahoma, Norman, Oklahoma, USA
*Corresponding Author : Corporal-Lodangco IL
School of Meteorology, University
of Oklahoma, Norman, Oklahoma, USA
Tel: 405-620-5893
Fax: 405-325-7689
E-mail: [email protected]
Received: December 23, 2015;Accepted: January 23, 2016;Published: January 30, 2016
Citation: Corporal-Lodangco IL, Leslie LM (2016) Cluster Analysis of Philippine Tropical Cyclone Climatology: Applications to Forecasting. J Climatol Weather Forecasting 4:152. doi:10.4172/2332-2594.1000152
Copyright: © 2016 Corporal-Lodangco IL, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
 

Abstract

This study aims at providing an increased understanding of tropical cyclone (TC) activity in the Philippines, to assist in reducing the fatalities and economic costs of TC impacts. A cluster analysis, using K-means, is applied to Philippine region TCs for the period 1950-2011. The clustering is carried out for TC genesis and decay locations, and TC tracks. Silhouette coefficient values and key meteorological and oceanic variables determine the optimal cluster numbers. It is found that, for the Philippine region, there are 4 genesis location, 5 decay location and 6 track clusters. The classification of TC genesis locations captures the longitudinal separation of cyclogenesis regions. The formation area east of the Philippines (west of 140°E) is the most active region, with 398 genesis points. The main TC dissipation area is Southeast Asia, with 352 decay points. Clustering the TC tracks identifies various track types by separating them into discrete patterns. Several distinct types of straight moving and recurving trajectories emerge. Short, straight west northwestward tracks directed towards Indochina have the highest trajectory frequency, with 248 TC tracks. The spatial and temporal behavior of Philippine TCs is determined from the clusters of genesis locations, decay locations, and tracks, for specific months. Because the TC genesis locations define the subsequent TC paths and landfall locations, they consequently also provide valuable TC forecasting guidance. Moreover, the monthly distribution of genesis and decay locations, and tracks, enables the variability of seasonal cycles between the clusters to be calculated.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords