alexa Cohesive Discontinuities Growth Analysis using a Nonlinear Boundary Element Formulation | OMICS International | Abstract
ISSN: 2168-9679

Journal of Applied & Computational Mathematics
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Cohesive Discontinuities Growth Analysis using a Nonlinear Boundary Element Formulation

Leonel ED* and Sergio GFC

Department of Structural Engineering, University of São Paulo, School of Engineering of São Carlos, Av. Trabalhador SãoCarlens, 400, 13566-590 São Carlos-SP, Brazil

*Corresponding Author:
Leonel ED
Department of Structural Engineering, University of São Paulo
School of Engineering of São Carlos, Av. Trabalhador SãoCarlens
400, 13566-590 São Carlos-SP, Brazil
Tel: +55 163373 8211
Fax:+55163373 9482
E-mail: [email protected]

Received date: May 31, 2014; Accepted date: July 07, 2014; Published date: July 10, 2014

Citation: Leonel ED, Sergio GFC (2014) Cohesive Discontinuities Growth Analysis using a Nonlinear Boundary Element Formulation. J Appl Computat Math 3: 172. doi: 10.4172/2168-9679.1000172

Copyright: © 2014 Leonel ED, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


The present work deals the development of a nonlinear numerical model for structural analysis of solids composed by multi-domains considering cohesive discontinuities along its interfaces. The numerical method adopted is the boundary element method (BEM), through its singular and hyper–singular integral equations. Due to the mesh dimensionality reduction provided by BEM, this numerical method is robust and accurate for analyzing the fracture process in solids, as well as physical nonlinearities that occurs along the body’s boundaries. Multi-domain structures are modelled considering the sub-region technique, in which both equilibrium of forces and compatibility of displacements are enforced along all interfaces. The crack propagation process is simulated by the fictitious crack model, in which the residual resistance of the region ahead the crack tip is represented by cohesive tractions. It leads to a nonlinear problem relating the tractions at cohesive interface cracks to its crack opening displacements. The implemented formulation is applied to analysis of three examples. The numerical responses achieved are compared to numerical and experimental solutions available in literature in order to show the robustness and accuracy of the formulation.


Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A


[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


porn sex

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

Gaziantep Escort

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A


[email protected]

1-702-714-7001Extn: 9037


James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

mp3 indir

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals


Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T


[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version