alexa Comparative Analysis of Non-Synonymous and Synonymous S
ISSN: 0974-276X

Journal of Proteomics & Bioinformatics
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Comparative Analysis of Non-Synonymous and Synonymous Substitution of Capsid Proteins of Human Herpes Virus

Vipan Kumar Sohpal1*, Apurba Dey2 and Amarpal Singh3

1Department of Chemical & Biotechnology, Beant College of Engineering & Technology, Gurdaspur, Punjab, India

2Department of Biotechnology, National Institute of Technology, Durgapur West Bengal, India

3Department of Electronics & Communication Engineering, Beant College of Engineering & Technology, Gurdaspur, Punjab, India

*Corresponding Author:
Vipan Kumar Sohpal
Department of Chemical & Biotechnology
Beant College of Engineering & Technology
Gurdaspur, Punjab, India
E-mail: [email protected]

Received Date: June 22, 2012; Accepted Date: August 07, 2012; Published Date: August 09, 2012

Citation: Vipan Kumar S, Apurba D, Amarpal S (2012) Comparative Analysis of Non-Synonymous and Synonymous Substitution of Capsid Proteins of Human Herpes Virus. J Proteomics Bioinform 5: 172-176. doi: 10.4172/jpb.1000231

Copyright: © 2012 Vipan Kumar S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

The difference between non-synonymous (dN) to synonymous (dS) changes between sequence is computed to assay the direction of evolution. In this paper we compare closely related strains HHV species, codon-by-codon using maximum likelihood analysis and the divergence time of the two sequences. We demonstrate that a substitution model provides evolution hypothesis when comparing closely related species. The effect of transition/transversion ratio and Fischer exact test are on dN-dS (p-distance), and the problems associated with these concepts for HHV, are also discussed. We applied methods on sequence capsid protein of the HHV-1 and HHV-2 for detailed analyses of capsid structures provides the best evidence for an evolution. We conclude that substitution models, dN-dS, divergence time and transition/transversion have critical role to study the evolution.

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords