alexa Compression Fatigue Crack Growth in Nacre and Its Implication on the Mechanical Performance of Orthopedic Implants | OMICS International | Abstract
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Compression Fatigue Crack Growth in Nacre and Its Implication on the Mechanical Performance of Orthopedic Implants

Hamza S*

National Institute of Apllied Sciences and Technology, Tunisia, Tunisia

*Corresponding Author:
Hamza S
National Institute of Applied Sciences and Technology
Tunisia, Tunisia
Tel: 21671703829
E-mail: [email protected]

Received Date: June 27, 2016; Accepted Date: November 15, 2016; Published Date: November 25, 2016

Citation: Hamza S (2016) Compression Fatigue Crack Growth in Nacre and Its Implication on the Mechanical Performance of Orthopedic Implants. J Material Sci Eng 6:301. doi: 10.4172/2169-0022.1000301

Copyright: © 2016 Hamza S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The aim of the present review is to present some phenomenological observations on compression fatigue crack propagation of nacre samples. The first part of the paper reviews the characteristics of hierarchical structure and the mechanical properties of nacre, which characterize its specific properties. We have investigated the main chemical constituents of nacre and determined their mineral elements. Electron microscopy studies revealed that nacre is composed of a single-crystal aragonite. In the second part of the paper samples of nacre have been tested in compression-compression fatigue under cyclic loading and a Paris curve have been constructed at a fatigue ratio of about 10, subjected to a 30 Hz sinusoidal compressive load. It has been demonstrated that two driving forces ΔK and Kmax mainly govern the overall fatigue crack growth of nacre. Nacre shows considerable ability to stop cracking. By means of axial compression tests, we identified a single elastic and inelastic property. Measurements based on experiments were first done. Mean values of compressive strength and modulus of elasticity were obtained for several samples. A three-point bending test was performed on polished nacre samples according to the international standards for Young’s modulus, bending strength. An attempt is made to explain qualitatively the mechanical behavior of nacre in terms of its submicroscopic structure. It is concluded that the precise geometric arrangement of the plates is highly important. The results obtained provide a director for the design of orthopedic implants.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7