alexa Computational Approach in Understanding Mechanism of Action of Isoniazid and Drug Resistance
ISSN: 2161-1068

Mycobacterial Diseases
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Commentary

Computational Approach in Understanding Mechanism of Action of Isoniazid and Drug Resistance

Jena L, Wankhade G, Waghmare P and Harinath BC*

Department of Bioinformatics, Tropical Disease Research Centre, India

Corresponding Author:
B.C. Harinath
JB Tropical Disease Research Centre
Mahatma Gandhi Institute of Medical Sciences
Sevagram - Wardha, Maharashtra, India
Tel: +91 7152 – 284341
E-mail: [email protected]

Received date: February 24, 2016; Accepted date: March 09, 2016; Published date: March 22, 2016

Citation: Jena L, Wankhade G, Waghmare P, Harinath BC (2016) Computational Approach in Understanding Mechanism of Action of Isoniazid and Drug Resistance. Mycobact Dis 6:202. doi:10.4172/2161-1068.1000202

Copyright: © 2016 Jena L, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Most Multi Drug Resistance and Extremely Drug Resistance clinical strains of Mycobacterium tuberculosis are found to be resistant to the anti-tuberculousis drugs such as Isoniazid and Rifampicin. The mechanism of action and drug resistance due to Isoniazid has been the subject of extensive study. According to Tuberculosis drug resistance mutation database, 22 genes/proteins are associated with Isoniazid resistance such as katG, nat, inhA, ahpc, ndh, kasA etc. Mutation in the gene seems to affect the formation of Isoniazid to its active form or enhancing the catabolism thus making it ineffective. Studies in different laboratories have shown usefulness of computational approach in elucidating the mechanism of action of Isoniazid and development of drug resistance. Computational studies in our laboratory showed that a mutation in KatG (S315T/S315N) prevents free radical formation, thus the development of resistance to the drug. Further, we observed through molecular dynamics simulation approach that mutation (G67R/G207E) in NAT enzyme increases the stability and catalytic ability of the mutant enzyme, thus making the drug ineffective.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords