alexa Computational Fluid Dynamics Modeling of Extrathoracic Airway Flush: Evaluation of High Flow Nasal Cannula Design Elements | OMICS International | Abstract
ISSN: 2161-105X

Journal of Pulmonary & Respiratory Medicine
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Computational Fluid Dynamics Modeling of Extrathoracic Airway Flush: Evaluation of High Flow Nasal Cannula Design Elements

Thomas L Miller1,2*, Babak Saberi3 and Shadi Saberi3

1Vapotherm Inc., Exeter, New Hampshire, USA

2Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA

3Green Twirl Energy, Ontario, Canada

*Corresponding Author:
Thomas L Miller
Clinical and Scientific Affairs, 22 Industrial Drive
Suite 1 Exeter, NH-03833, USA
Tel: (856) 279-1227
Fax: (603) 658-0181
E-mail: [email protected]

Received date: September 22, 2016; Accepted date: October 26, 2016; Published date: October 31, 2016

Citation: Miller TL, Saberi B, Saberi S (2016) Computational Fluid Dynamics Modeling of Extrathoracic Airway Flush: Evaluation of High Flow Nasal Cannula Design Elements. J Pulm Respir Med 6:376. doi: 10.4172/2161-105X.1000376

Copyright: © 2016 Miller TL, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Objective: High flow nasal cannula (HFNC) is an evolving respiratory therapy whereby high flow rates of conditioned breathing gas are delivered into the nasal cavity to purge anatomical dead space of CO2 rich expired gas. The aim of this project was to create a computational fluid dynamics (CFD) model to evaluate the fluid patterns in the human nasal and pharyngeal cavities with HFNC application, and quantify time to purge for two cannula configurations. Methods: Three-dimensional geometry of the human airway was used to define the extrathoracic dead space and the two cannula designs tested incorporate large vs small bore nasal prong configurations (Vapotherm, Exeter, NH, USA). The fluid flow simulations were performed using FLOW-3D software, set up for a cannula flow rate of 20 L·min-1 and run until steady state. Results: Basic flow patterns were similar between cannulae, creating vortices around a central inward flow path. Flow velocity around the vortices was greater with the small prong cannula, resulting in a lower pressure in each region of the nasal and nasopharyngeal space. The calculation of purge time revealed that the small prong nasal cannula was able to clear the nasal, pharyngeal and oral cavities in 2.2 seconds, whereas the large bore cannula required 3.6 seconds (64% longer). Conclusion: The current CFD data validate that a smaller bore nasal prong facilitates the purge action, which is related to velocity and dynamic energy induced by the tighter prong nozzle as opposed to the lesser occlusion of the nares.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7