alexa Computational Investigation of Flow Separation in Incom
ISSN ONLINE(2319-8753)PRINT(2347-6710)

International Journal of Innovative Research in Science, Engineering and Technology
Open Access

Like us on: https://twitter.com/ijirset_r
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Computational Investigation of Flow Separation in Incompressible Aerodynamic Regime

 
To read the full article Peer-reviewed Article PDF image

Abstract

Numerical simulation of flow past airfoils in the stalled region is a challenging problem due to various complex phenomena like strong vortex dynamics, boundary layer separation due to adverse pressure gradient etc. For accurate numerical prediction of separated flow, correct modeling of boundary layer is essential to capture the flow details. In the present work 2D Computational Fluid Dynamics (CFD) analysis for flow around NACA 23024 subsonic airfoil at Reynolds number of 3 million is carried out for a range of angle of attack (0 to +20 degrees) covering both the linear slope and stalling region using ANSYS FLUENT CFD software package. CFD analysis results are compared with the wind tunnel test results. The performance of Spalart-allamaras one equation turbulence model, K-epsilon turbulence model with standard wall functions is analyzed. Lift and drag coefficients measured in wind tunnel are compared with the CFD analysis results. Deviation between wind tunnel test results and CFD analysis results in the stalled region is analyzed and accurate methodology for capturing the aerodynamic flow phenomena is established

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords