alexa Computational Studies of the Reactivity, Regio-Selectivity and Stereo-Selectivity of Pericyclic Diels-Alder Reactions of Substituted Cyclobutenones

Journal of Computer Science and Networking
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Computational Studies of the Reactivity, Regio-Selectivity and Stereo-Selectivity of Pericyclic Diels-Alder Reactions of Substituted Cyclobutenones

Richard Tia*, Eyram Asempa and Evans Adei

Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

*Corresponding Author:
Richard Tia
Department of Chemistry
Kwame Nkrumah University of Science and Technology
Kumasi, Ghana
Tel: 00233(0) 243574146
E-mail: richtiagh@yahoo.com

Received date: May 12, 2014; Accepted date: May 27, 2014; Published date: June 02, 2014

Citation: Tia R, Asempa E, Adei E (2014) Computational Studies of the Reactivity, Regio-Selectivity and Stereo-Selectivity of Pericyclic Diels-Alder Reactions of Substituted Cyclobutenones. J Theor Comput Sci 1: 114. doi:10.4172/2376-130X.1000114

Copyright: © 2014 Tia R, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The power of the Diels-Alder reaction was expanded recently through the discovery by Li and Danishefsky that cyclobutenone is an unusually reactive dienophile and that the adducts formed can be converted to products that are formally the Diels-Alder adducts of unreactive dienophiles. However, the effects of substituents on the reactivity as well as the region - and stereo-selectivity of the Diels-Alder reactions of cyclobutenone have not been clearly elucidated yet. This paper reports the results of a computational study at the MP2/6-31G* level of theory into the effects of substituents on the reactivity, regio-selectivity and stereo-selectivity of the Diels-Alder reactions of some substituted cyclobutenones with cyclic and acyclic dienes. It was found that the Diels-Alder reaction of maleic anhydride is far more feasible kinetically than the reaction of cyclobutenone, the activation barrier of the former being more than thrice that of the latter, indicating that maleic anhydride is a far better dienophile than cyclobutenone, which in turn implies that for cyclic dienophiles ring strain is not the dominant factor controlling the kinetics of the Diels-Alder reaction as has been suggested elsewhere. The Diels - Alder reactions of cyclobutenones were all found to follow an asynchronous concerted reaction pathway. In the reactions of the parent (unsubstituted) cyclobutenone with 1,3-butadiene and cyclopentadiene, the endo pathway is the most preferred kinetically, by 2.24 and 1.64 kcal/mol respectively. However, in the reactions of the 4,4-disubstituted cyclobutenones the exo pathway becomes the most preferred in the reactions with both 1,3-buadiene and cyclopentadiene, except for the CN-substituted cyclobutenone where the endo pathway is still the most preferred pathway. In the reactions of the 4-monosubstituted cyclobutenone with 1,3-butadiene, the anti-positions are preferred over the syn positions. The endo-anti position gives the most reactive dienophile kinetically. In the reactions of trans-piperylene with substituted cyclobutenones, the meta-endo position is the most preferred kinetically. In the reactions of isoprene with substituted cyclobutenones, the para-endo substitution gives the lowest activation barriers and therefore the most favorable reaction kinetics. In all the reactions considered in this work, the CN-substituted species have the lowest activation barriers and the most stable products. In the reactions of 4,4-disubstituted cyclobutenones with 1,3-butadiene and cyclopentadiene, the order of activation barriers is CN < OH < Cl < CH3 and the stability of the products decrease in the order CN>OH>Cl>CH3.

Keywords

Related Subjects

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

agriaquaculture@omicsonline.com

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

biochemjournals@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

chemistryjournals@omicsonline.com

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

clinicaljournals@omicsonline.com

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

engineeringjournals@omicsonline.com

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

nutritionjournals@omicsonline.com

1-702-714-7001Extn: 9042

General Science

Andrea Jason

generalscience@omicsonline.com

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

geneticsmolbio@omicsonline.com

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immunomicrobiol@omicsonline.com

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

nursinghealthcare@omicsonline.com

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

medicaljournals@omicsonline.com

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuropsychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

pharmajournals@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords