alexa Conformational Preferences of 2-Acylpyrroles in Light of FT-IR and DFT Studies
ISSN: 2161-0398

Journal of Physical Chemistry & Biophysics
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Conformational Preferences of 2-Acylpyrroles in Light of FT-IR and DFT Studies

Alina T Dubis*
Institute of Chemistry, University of Białystok, Hurtowa 1, 15-399 Białystok, Poland
Corresponding Author : Alina T Dubis
Deputy Director
Institute of Chemistry
University Of Białystok
Institute of Chemistry
Al. Piłsudskiego 11/4
Białystok, 15-443, Poland
Tel: +48600447773
E-mail: [email protected]
Received July 15, 2014; Accepted August 11, 2014; Published August 13, 2014
Citation: Dubis AT (2014) Conformational Preferences of 2-Acylpyrroles in Light of FT-IR and DFT Studies. J Phys Chem Biophys 4:155. doi:10.4172/2161-0398.1000155
Copyright: © 2014 Dubis AT. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
 

Abstract

Conformations of alpha-substituted pyrroles have been effectively studied using spectroscopic methods assisted by theoretical calculations developed in the recent decade. The question of how to effectively study the conformation of 2-acylpyrrole no longer remains unanswered. The detailed spectroscopic studies conducted in the last decade and interpreted on the basis of theoretical calculations provide a satisfactory answer to that question. Based on the Density Functional Theory (DFT) calculations of conformational properties of 2-acylpyrroles, for which two stable rotameric forms were predicted, syn and anti-conformers have been studied either by experimental or theoretical methods. The family of 2-acylpyrroles have both a proton donor N-H group and a proton acceptor C=O group. This structure favors the formation of doubly hydrogen-bonded cyclic dimers connected by two N-H...O=C bonds. The tendency to form cyclic dimers stabilizes the syn-conformation. Due to these properties 2-acylpyrroles can be used as structural models for the conformational analysis of peptides.
This review summarizes recent investigations of conformations of 2-acylpyrroles, with a particular emphasis on the hydrogen bonds forming within these systems. The influence of 2-substitution on different aspects of stability of these molecular systems and the usefulness of infrared spectroscopy supported by theoretical calculations in H-bonds and conformational studies are discussed. Among the molecular properties hydrogen bond energy, structural characteristics such as C=O bond length of dimers and unique spectral features of 2-acylpyrroles that can be used to predict and investigate the conformation and structure of proteins are considered.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords