alexa Control of Morphology and Acidity of SAPO-5 for the Met
ISSN: 2090-4568

Journal of Advanced Chemical Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Control of Morphology and Acidity of SAPO-5 for the Methanol-To- Olefins (MTO) Reaction

Kazusa Terasaka, Hiroyuki Imai* and Xiaohong Li

Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, Japan

Corresponding Author:
Hiroyuki Imai
Faculty of Environmental Engineering
The University of Kitakyushu, 1-1 Hibikino
Wakamatsu, Kitakyushu
Fukuoka 808-0135, Japan
Tel: +81-93-695-3733
Fax: +81-93-695-3398
E-mail: [email protected]

Received date: August 28, 2015; Accepted date: October 28, 2015; Published date: October 20, 2015

Citation: Terasaka K, Imai H, Li X (2015) Control of Morphology and Acidity of SAPO-5 for the Methanol-To-Olefins (MTO) Reaction. J Adv Chem Eng 5:138. doi:10.4172/2090-4568.1000138

Copyright: © 2015 Terasaka K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Silicoaluminophosphate (SAPO) zeotype materials, a family of zeolites with micropores, have moderate acid strengths compared with conventional aluminosilicate zeolites; furthermore, their acid amounts can be tuned by the incorporation of Si species into the aluminophosphate (AlPO) framework. The conversion of methanol to light olefins including ethene, propene, and butenes (isobutene, 1-butene, and 2-butenes), methanol-to-olefins (MTO) reaction, is carried out over zeolites as an acid catalyst. In the MTO reaction, the enhancement of the diffusivity of reactants and products and the tuning of the acidity of zeolites are crucial keys to the improvement of the catalyst life due to the suppression of the coke deposition in the pores. In the present study, we have focused on the improvement of the catalytic performance of SAPO-5 materials with the AFI structure with large micropores of 0.73 nm apertures in the MTO reaction. Highly crystalline SAPO-5 with different morphologies and acidities were readily synthesized by merely varying the concentration of the starting gel. The employment of a highly concentrated starting gel with a H2O/Al ratio of 5 led to the formation of smaller-sized SAPO-5 crystallites with a larger amount of mild acid sites compared with SAPO-5 synthesized with the conventional compositions with the H2O/Al ratio of 50. The catalytic performance of the synthesized SAPO-5 materials as an acid catalyst was evaluated in the MTO reaction. The crystallite morphology as well as the acid amount scarcely affected the initial activity and product distribution, while the catalyst life was considerably affected. The decrease in the crystallite size of SAPO-5 led to improving the catalyst life due to the improvement of the resistance to the coke deposition.

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords