alexa Converging Cylindrical Detonation Waves In An Ideal Gas
ISSN: 2320-2459

Research & Reviews: Journal of Pure and Applied Physics
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Converging Cylindrical Detonation Waves In An Ideal Gas With An Azimuthal Magnetic Field

Jagadamba Prasad Vishwakarma* and Rajendra Kumar Srivastava

 

Department of Mathematics and Statistics, D.D.U. Gorakhpur University, Gorakhpur-273009, India.

*Corresponding Author:
Jagadamba Prasad Vishwakarma
Department of Mathematics and Statistics, D.D.U. Gorakhpur University, Gorakhpur-273009, India.

Received date: 20/09/2013 Revised date: 25/09/2013 Accepted date: 30/09/2013

 

 

Abstract

This paper analyses the propagation of converging cylindrical detonation waves in an ideal gas with varying initial density and varying azimuthal magnetic field. The Chester-Chisnell-Whitham (CCW) method was employed to determine the detonation front velocity and the other flow-variables just be- hind the shock in the case when (i) the gas is weakly ionized before and behind the detonation front, (ii) the gas is strongly ionized before and behind the detonation front and (iii) non-ionized (or weakly ionized)gas undergoes intense ionization as a result of the passage of the detonation front. It is investigated that in case (i) an increase in the value of the strength of initial magnetic field (M−2cj) shows almost negligible effect on the convergence of the detonation front and the pressure behind it, while an increase in the value of ratio of specific heats of the gas (γ), increases the velocity of detonation front and the pressure behind it near the axis. A decrease in the value of index for variable density α, accelerates the convergence of front and increases pressure behind it. In the case (ii) on increasing (M−2cj), when α = 0, the front velocity near the axis and the pressure behind it decrease. A decrease in the value of α increases the velocity of the detonation front and the pressure behind it. An increase in the value of γ in non-magnetic case, rapidly increases the velocity of detonation front and the pressure behind it. In the case (iii), the variation of M−2cj and α, show similar behaviour as in case (ii), but an increase in the value of γ rapidly increases the pressure behind the detonation front.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords