alexa CTCF May Not Directly Regulate ERα mRNA Expressi
ISSN: 1948-5956

Journal of Cancer Science & Therapy
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

CTCF May Not Directly Regulate ERα mRNA Expression in the ER+ MCF7 Breast Cancer Cell Line

Okezie Ofor*, Helen Moor, David Humber and Christina Greenwood
Postgraduate Medical Institute, Anglia Ruskin University, Cambridge and Chelmsford, UK
*Corresponding Author : Ofor O
Postgraduate Medical Institute, Anglia Ruskin University
Cambridge and Chelmsford, East Rd, Cambridge CB1 1PT, UK
Tel: +441245493131
E-mail: [email protected]
Received January 25, 2016; Accepted March 15, 2016; Published March 17, 2016
Citation: Ofor O, Moor H, Humber D, Greenwood C (2016) CTCF May Not Directly Regulate ERa mRNA Expression in the ER+ MCF7 Breast Cancer Cell Line. J Cancer Sci Ther 8:059-065. doi:10.4172/1948-5956.1000391
Copyright: © 2016 Ofor O, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
 

Abstract

Introduction: CTCF is an evolutionally conserved 11-zinc finger protein factor involved in an array of processes whose deregulation could lead to cellular transformation. Through interactions with ERα binding regions and ERregulated genes, CTCF was shown to compartmentalize the cellular genome into domains. It also colocalized with ERα in MCF7 cells and had interactions with ERα during histone deacetylase recruitment and fork-head activity. A fast-running isoform was previously shown to be expressed in breast cancer tissue but not in normal breast tissue. It is not clear whether there is a regulatory relationship between CTCF and ERα in breast cancer.
Aim: To determine whether CTCF expression regulated ERα expression in the ER+ MCF7 breast cancer cell line.
Methods: MCF7 breast cancer cells were transfected with either CTCF expression vectors or siRNA against CTCF. Following CTCF over-expression and knock-down, changes in endogenous expression of ERα gene and protein expression were monitored by quantitative polymerase chain reaction (using MIQE guidelines) and western blot analysis respectively.
Results: CTCF plasmid overexpression and siRNA knockdown was associated with cell rounding but with 96.4% and 95.7% cell viability respectively. Increase in CTCF mRNA on over-expression was associated with a rise in CTCF protein expression. siRNA knockdown of CTCF mRNA was accompanied by a corresponding decrease in CTCF protein expression. CTCF over-expression and knockdown appeared to inhibit the ability to detect ERα protein expression by western blotting. Neither the over-expression nor knockdown of CTCF altered ERα mRNA expression as detected by QPCR.
Conclusion: Alterations in CTCF mRNA expression did not affect ERα gene expression in MCF7 cells suggesting that CTCF interactions with the estrogen receptor in breast cancer may not be mediated via direct regulation of ERα mRNA expression.

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords