alexa Cytokine Intervention: A Double Edged Sword in the Nkg2d System Regulation | OMICS International | Abstract
ISSN: 1745-7580

Immunome Research
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Cytokine Intervention: A Double Edged Sword in the Nkg2d System Regulation

Ana Montalban-Arques1, Gregor Gorkiewicz1, Victor Mulero2 and Jorge Galindo-Villegas2*

1Institute of Pathology, Medical University of Graz, Graz, Austria

2Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain

*Corresponding Author:
Jorge Galindo-Villegas
Department of Cell Biology and Histology
Faculty of Biology, University of Murcia
Campus Universitario de Espinardo
30100 Murcia, Spain
Tel: (34)-868-88-3938
Fax :(34)-868-88-3963
E-mail: [email protected]

Received date: January 04, 2014; Accepted date: February 26, 2014; Published date: April 02, 2014

Citation: Montalban-Arques A, Gorkiewicz G, Mulero V, Galindo-Villegas J (2014) Cytokine Intervention: A Double Edged Sword in the Nkg2d System Regulation. Immunome Res S2:002. doi:10.4172/1745-7580.S2.002

Copyright: © 2014 Montalban-Arques A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The natural killer group 2 members D (NKG2D) is an activating receptor which plays a major role in immune surveillance, and the detection and elimination of malignant tumors and infected cells. NKG2D acts over both arms of the vertebrate immune response, and is expressed in some human and mouse myelopoietic, γδ T, NKT and CD4+ cells, but is present in all NK and CD8+ T cells in humans and activated mouse CD8+ T cells. In humans, eight ligands which selectively bind to the NKG2D receptor have been identified. These ligands are not systemically expressed, but are triggered in response to stress and expressed only under specific pathological states. Several research results point to the importance of cytokines for increasing expression of NKG2D to restore the functionality of NK cells as well as their ligands in the target cells. However, the NKG2D system itself in an activated state, also release pro and anti-inflammatory cytokine transcripts to establish communication with other cells or for self-regulation. Additionally, type I antiviral interferon is largely produced. Such cytokine interactions could be regarded as a double edged sword. This behavior is emphasized by a discrepancy regarding the functionality of cytokines which interact with, or on the NKG2D system. Indeed, they seem to protect the host and rather can induce ligand expression, cell proliferation or dissemination of malignant tumors, generating complicated cytokine-mediated messenger loops which are far from being fully understood. Whatever the case, cytokines related to the NKG2D system could be an attractive and useful target for immunotherapeutic approaches. Thus, here we briefly review recent findings on the main aspects involved in the regulation of this system and, particularly, attempt to clarify the role played by cytokines in the activating or inhibitory function they exert over the NKG2D system in different contexts.

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7