alexa Data Adaptive Rule-based Classification System for Alzheimer Classification
ISSN: 0974-7230

Journal of Computer Science & Systems Biology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Data Adaptive Rule-based Classification System for Alzheimer Classification

Mohit Jain1*, Prerna Dua2, Sumeet Dua1 and Walter J Lukiw3

1Department of Computer Science, Louisiana Tech University, Ruston, LA 71270, USA

2Department of Health Informatics and Information Management, Louisiana Tech University, Ruston, LA 71270, USA

3Neuroscience Centre of Excellence, Louisiana State University Health Sciences Centre, New Orleans, LA 70112, USA

*Corresponding Author:
Mohit Jain
Department of Computer Science
Louisiana Tech University
Ruston, LA 71270, USA
E-mail: [email protected]

Received date: June 28, 2013; Accepted date: August 28, 2013; Published date: September 07, 2013

Citation: Jain M, Dua P, Dua S, Lukiw WJ (2013) Data Adaptive Rule-based Classification System for Alzheimer Classification. J Comput Sci Syst Biol 6:291-297 doi:10.4172/jcsb.1000124

Copyright: © 2013 Jain M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



Microarrays have already produced huge amounts of valuable genetic data that is challenging to analyse due to its high dimensionality and complexity. An inherent problem with the microarray data which is characteristic of diseases such as Alzheimer’s is that they face computational complexity due to the sparseness of the points within the data, which affect both the accuracy and the efficiency of supervised learning methods. This paper proposes a data-adaptive rule-based classification system for Alzheimer’s disease classification that generates relevant rules by finding adaptive partitions using gradient-based partitioning of the data. The adaptive partitions are generated from the histogram by analyzing Tuple Tests following which efficient and relevant rules are discovered that assist in classifying the new data correctly. The proposed approach has been compared with other rule-based and machine learning classifiers, and detailed results and discussion of the experiments are presented to demonstrate comparative analysis and the efficacy of the results.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version