GET THE APP

..

Journal of Health & Medical Informatics

ISSN: 2157-7420

Open Access

Decomposition Approach for Learning Large Gene Regulatory Network

Abstract

Leung-Yau Lo, Man-Leung Wong, Kwong-Sak Leung, Wing-Lun Lam and Chi-Wai Chung

Gene Regulatory Network (GRN) represents the complex interaction between Transcription Factors (TFs) and other genes with time delays. They are important in the working of the cell. Learning GRN is an important first step towards understanding the working of the cell and consequently curing diseases related to malfunctioning of the cell. One significant problem in learning GRN is that the available time series expression data is still limited compared to the network size. To alleviate this problem, besides using multiple expression replicates, we propose to decompose large network into small subnetwork without prior knowledge. Our algorithm first infers an initial GRN using CLINDE, then decomposes it into possibly overlapping subnetworks, then infers each subnetwork by either CLINDE or DD-lasso and finally merges the subnetworks. We have tested this algorithm on synthetic data of many networks with 500 and 1000 genes. We have also tested on real data on 41 human TF regulatory networks. Results show that our proposed algorithm does improve the GRN learning performance of using either CLINDE or DD-lasso alone on the large network.

PDF

Share this article

Google Scholar citation report
Citations: 2128

Journal of Health & Medical Informatics received 2128 citations as per Google Scholar report

Journal of Health & Medical Informatics peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward