alexa Design and Implementation of BLDC Motor Using Regenera
ISSN ONLINE(2278-8875) PRINT (2320-3765)

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Design and Implementation of BLDC Motor Using Regenerative Braking for Electric Vehicle

G.Maruthaipandian1, S.Ramkumar2, Dr.M.Muruganandam3
  1. PG Student, Dept. of EEE, Muthayammal Engineering College, Rasipuram, Tamilnadu, India
  2. Assistant Professor, Dept. of EEE, Muthayammal Engineering College, Rasipuram, Tamilnadu, India
  3. Professor, Dept. of EEE, Muthayammal Engineering College, Rasipuram, Tamilnadu, India
Related article at Pubmed, Scholar Google
 

Abstract

In this paper proposes a simple but effective method of electric brake with energy regeneration for a brushless dc motor, of electric vehicle (EV). BLDC motor control utilizes the traditional proportional-integralderivative (PID) control and the distribution of braking force adopts fuzzy logic Conventionally, EVs use mechanical brake to increase the friction of wheel for the deceleration purpose. However, from the viewpoint of saving energy, the mechanical brake dissipates much energy since the EV’s kinetic energy is converted into the thermal one. In view of this, this paper discusses how to convert the kinetic energy into the electrical one that can be recharged to the battery. Thus, both the electric brake and energy regeneration are achieved. In comparison to other solutions, the new solution has better performance in regard to realization, robustness and efficiency. In this paper, we have chosen the three most important factors: SOC, speed and brake strength as the fuzzy control input variables. We have found that RBS can obtain appropriate brake current, which is used to produce brake torque. At the same time, we have adopted PID control to adjust the BLDC motor PWM duty to obtain the constant brake torque. PID control is faster than fuzzy control so the two methods combined together can realize the smooth transition since the braking kinetic energy is converted into the electrical energy and then returns to the battery, the energy regeneration could increase the driving range of an EV.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords