alexa Design, Synthesis and Calcium Channel Blocking Activity of Diltiazem- Verapamil Hybrid Molecules
ISSN: 2161-0444

Medicinal Chemistry
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Design, Synthesis and Calcium Channel Blocking Activity of Diltiazem- Verapamil Hybrid Molecules

Ahmed S Mehanna1*, Timothy J Maher1 and Pintapa P Grongsaard2

1Department of Pharmaceutical Sciences, School of Pharmacy-Boston, MCPHS University, 179 Longwood Avenue, Boston MA 02115, USA

2Processing Chemist, Department of Process Chemistry, Merck & Co. Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, USA

*Corresponding Author:
Ahmed Mehanna
Professor of Medicinal Chemistry
Department of Pharmaceutical Sciences
School of Pharmacy-Boston
MCPHS University
179 Longwood Avenue
Boston MA 02115, USA
Tel: +617-732-2955
Fax: +617-732-2228
E-mail: [email protected]

Received date: August 20, 2014; Accepted date: September 25, 2014; Published date: September 27, 2014

Citation: Mehanna AS, Maher TJ, Grongsaard PP (2014) Design, Synthesis and Calcium Channel Blocking Activity of Diltiazem-Verapamil Hybrid Molecules. Med chem 4:704-703. doi: 10.4172/2161-0444.1000216

Copyright: 2014 Mehanna AS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



The current manuscript describes the design, synthesis, and in vitro testing of four thioacetanilides with diltiazemverapamil hybrid structural features as potential calcium channel blockers. The current hybrid strategy of drug design aimed to generate compounds that could span, with a single compound, the trans-membrane locales where the two drugs bind, with the ultimate goal of increasing the blocking activity. The latter, was assessed by measuring the inhibitory effects, expressed as IC50, on calcium-induced contractions of potassium depolarized isolated rat aorta strips. The assessment of the binding locales was determined by incubating the test compound with aortic strips for two different periods, 10-minutes and 2-hours, before adding the contractile calcium ions to the assay medium. Diltiazem IC50 values were 0.26 and 0.14 μM, after 10-minutes and 2-hours, respectively, reflecting less than two fold increase in activity and confirming previous reports that its locale of binding in mostly on the exterior side of the membrane. On the other hand, verapamil IC50 values were 0.47 and 0.14 μM after 10-minutes and 2-hour incubation respectively, reflecting approximately a 3-4 fold increase in activity and confirming previous reports that it binds mainly to the interior domains of the membrane. The four designed hybrid compounds showed, after 10-minute incubation, an IC50 value range of 3.7-12.0 μM, and after 2-hour incubation an IC50 range of 0.78-2.12 μM, reflecting approximately a 5-fold increase in activity suggesting more similarity to the verapamil binding profile. The data indicate that the designed compounds are with moderate activities, but generally less active as calcium channel blockers than either of the two parent drugs.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version