alexa Development and Characterization of a Novel Vesicular System for Topical Delivery: An Opportunity for Dimethylsulfoxide | OMICS International | Abstract
ISSN: 2161-0444

Medicinal Chemistry
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Development and Characterization of a Novel Vesicular System for Topical Delivery: An Opportunity for Dimethylsulfoxide

Sandra Simões, Tiago Mendes, Carla Eleutério, Pedro Pinto and Andreia Ascenso*

iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal

*Corresponding Author:
Andreia Ascenso
iMed.ULisboa, Faculdade de Farmácia
Universidade de Lisboa, Lisbon, Portugal
Tel: +351926984823
E-mail: [email protected]

Received date: March 26, 2016; Accepted date: April 15, 2016; Published date: April 20, 2016

Citation: Simões S, Mendes T, Eleutério C, Pinto P, Ascenso A (2016) Development and Characterization of a Novel Vesicular System for Topical Delivery: An Opportunity for Dimethylsulfoxide. Med chem (Los Angeles) 6:250-256. doi:10.4172/2161-0444.1000354

Copyright: © 2016 Simões S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Current use of Dimethylsulfoxide (DMSO) in dermatology and in topical formulations is scarce despite its potential as a skin penetration enhancer and as a pharmacological active itself. The aim of this work is to develop and characterize a new type of semisolid formulation of Soybean Phosphatidylcholine (SPC) - DMSO deformable nanovesicles for topical application. Tretinoin is used in this work as a model substance. The formulation presents a non-newtonian pseudoplastic behaviour and a pH compatible with the skin. Stability-on-storage at different temperatures indicate an excellent physical and chemical stability and SPC-DMSO vesicles show high deformability when forced to pass through pores much smaller than their own size. These new nanovesicles show a high Tretinoin yield. Calorimetric analysis indicates a possible interaction between Tretinoin and DMSO in the lipid vesicle bilayer and vesicles formulation exhibit low cytotoxic effect below 1.25% SPC. Moreover, these vesicles once applied on the skin do not cause irritation. This study presents a new opportunity in dermal delivery for a controversial molecule such as DMSO. SPC-DMSO vesicles have plenty of advantages for topical application and future studies should confirm their superiority as drug carriers for topical application as well as for clinical evaluations in managing skin disorders.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

busines[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version