alexa Development and Validation of Spectrophotometric Method
ISSN: 2161-0444

Medicinal Chemistry
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Development and Validation of Spectrophotometric Method for Determination of Oxyfluorfen Herbicide Residues

Khansaa Fatta Alrahman1, Abdala A Elbashir1* and Hassan El-obid Ahmed1,2

1Chemistry Department, Faculty of Science, University of Khartoum, Khartoum, Sudan

2Chemistry Department, Faculty of Science, Gassim University, Kingdom of Saudi Arabia

*Corresponding Author:
Abdala A. Elbashir
Chemistry Department
Faculty of Science
University of Khartoum
Khartoum, P.O. Box 321
1115, Sudan
E-mail: [email protected]

Received date: August 04, 2015; Accepted date: August 18, 2015; Published date: August 24, 2015

Citation: Alrahman KF, Elbashir AA, El-obid Ahmed H (2015) Development and Validation of Spectrophotometric Method for Determination of Oxyfluorfen Herbicide Residues. Med chem 5:383-387. doi: 10.4172/2161-0444.1000290

Copyright: © 2015 Alrahman KF, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Simple spectrophotometricmethod has been developed and validated for the determination of oxyfluorfen herbicide residues. The proposed method is based on the formation of an orange charge- transfer complex between oxyfluorfen pesticideas electron donor and 1,2- naphthoquinone-4-sulphonate (NQS) as electron acceptor. In basic medium pH 13.0, an orange colored product exhibiting maximum absorption peak (λ max) at 460 nm. The variables that affected the reaction such as pH, concentration and volume of NQS reagent, amount of buffer solution and reaction time were carefully studied and optimized. Under the optimum conditions, Beer’s law is obeyed in the range 0.4-4.0 μg/ mL of oxyfluorfen. The linear regression equation of the calibration curve is A=0.0906+0.2579 c (μg/mL), with a linear regression correlation coefficient of 0.9993. The molar absorptivity was 1.33 × 105 l/mol cm. The limits of detection (LOD) limits of quantification (LOQ) were found to be 0.12 μg/ mL, 0.36 μg/mL, respectively. The recovery rate is in the range of 93.50-103.00% was obtained. The proposed method has been successfully applied to the determination of oxyflourfen pesticide residues in tomato, onion and water with good accuracy and precision.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords